تحلیل ارتعاشات ورقهای مستطیلی نانوکامپوزیتی با استفاده از نرمافزار المان محدود

جلال ترابی'، اصغر قلندری شیرمرد'، میلاد فراهانی علوی"، سید محمدرضا حسینی علی آباد 🗺

^۱ دکترای مهندسی مکانیک جامدات، دانشگاه گیلان، رشت، ایران ۲ کارشناسی مهندسی مکانیک، بندرانزلی، ایران ^۳ گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه بوعلی سینا، همدان، ایران ^{۴۰} گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه مازندران، بابلسر، ایران(نویسنده مسئول)

چکیدہ

ورق ها کاربرد های بسیاری در زمینه های مختلف مهندسی از جمله صنایع هوافضا، دریایی و نیروگاهی دارند. همچنین پیشرفت های ایجاد شده در زمینه تکنولوژی های مربوط به علوم مواد، محققان را بر آن داشته تا با بکارگیری مواد پیشرفته در این سازه ها عملکرد آنها را بهبود ببخشند. با توجه به توسعه مواد هدفمند در سالیان اخیر، تحقیقات در زمینه رفتار مکانیکی سازه های ساخته شده از این مواد، گسترش یافته است. از طرفی خواص منحصر به فرد نانو لوله های کربنی اعم از مقاومت بالا سختی بالا و چگالی پایین باعث شده تا این مواد به عنوان یک تقویت کننده مناسب در مواد کامپوزیتی استفاده شوند. با استفاده از ایده بکار رفته در مواد هدفمند، نانو لوله های کربنی به عنوان تقویت کننده، به صورت هدفمند در مواد کامپوزیتی توزیع شده و نانو کامپوزیت های هدفمند، نانو لوله های کربنی به عنوان تقویت کننده، به صورت هدفمند در مواد کامپوزیتی های ساخته شده از اینوکامپوزیت های هدفمند، نانو لوله های کربنی را بوجود میآورند. در تحقیق حاضر، ارتعاشات آزاد ورق های ساخته شده از نانوکامپوزیت های تقویت شده با نانو لوله های کربنی را بوجود میآورند. در تحقیق حاضر، ارتعاشات آزاد ورق کامپوزیت از ترکیب نانو لوله های کربنی تک لایه و ماتریکس ایزوتروپ تشکیل شده است. ورق نانوکامپوزیتی با استفاده از نرم افزار المان محدود مدل سازی شده و فرکانس های طبیعی آن نیز محاسبه گردیده است. ورق نانوکامپوزیتی با استفاده از نرم افزار المان محدود مدل سازی شده و فرکانس های طبیعی آن نیز محاسبه گردیده است.

رتال حاضع علوم الشاني

واژههای کلیدی: ارتعاش ورقهای کامپوزیتی، المان محدود، تحلیل

سال دوم، شماره ۱۸، دی ۱۳۹۹

۱. مقدمه

اخیراً دسته ی جدیدی از مواد پیشرفته به نام نانو توپ کربنی(CNT) توجه بسیاری از دانشمندان را به خود جلب کرده است. CNT دارای خواصی مکانیکی، الکتریکی و حرارتی زیادی می باشد[۴-۱]. که آن ها را تبدیل بهترین گزینه برای تقویت ترکیبات پلیمری کرده است[۵،۶]. مطالعات گوناگون بر روی خواص مواد کامپوزیت تقویت شده نانوتیوپ کربنی (CNTCs) انجام شده است[۱۰-۷]. و همچنین نشان داده شده است که افزودن درصد اندکی از کربن نانوتیوپ می تواند به طور قابل توجهی خواصی مکانیکی، الکتریکی و حرارتی ترکیبات پلیمری را بهبود بخشد[۱۰–۱۱].

تحلیل های ساختاری مختلف برروی ساختارهای CNTRC ارائه شده است که تحلیل های فشاری و انحنایی پرتوهای نانو کامپوزیت تقویت شده CNT با استفاده از مدل سازی چند مقیاسی توسط Wuite و Adali انجام شده است[۱۴]. در این تحلیل گزارش شده است که میزان کم تقویت CNT منجر به بهبود قابل توجه در سختی اشعه و پرتو می شود.

بررسی رفتار مکانیکی سازه های ساخته شده از نانو کامپوزیت های هدفمند اولین بار توسط شن ارائه گردید. وی در این تحقیق خمش غیر خطی ورق ساخته شده از نانو کامپوزیت های هدفمند را تحت شرایط حرارتی مختلف بررسی کرده و سعی نمود تا با توزیع نانو لوله های کربنی در یک راستای مطلوب، خواص مکانیکی سازه را بهبود ببخشد. پس از این تحقیق، مطالعات بسیاری در زمینه بررسی رفتار مکانیکی تیرها، ورقها، پوسته ها و پانل های ساخته شده از نانو کامپوزیت ها صورت گرفته است. علاوه بر این، ژانگ و وئدینتیکاروا [۱۵] پیچش و انحنای پرتو نانو کامپوزیت، تقویت شده بوسیله تک دیواره CNT را مورد تجزیه و تحلیل قرار دادند. CNT ها در حالت ماتریسی منجر به خواصی مکانیکی یکنواخت فضایی مواد سنتی CNTRC می شود علاوه بر این؛ مواد درجه بندی شده (FGM) به لحاظ کارکرد، کامپوزیت های ناهمگن پیشرفته هستند که در آن ویژگی های مواد همواره در جهات خاصی تغییر می کند. این ویژگی های قابل توجه FGM ها منجر به کاربرد الگوی توزیع درجه بندی شده به لحاظ کابردی تقویت در رفتاری مکانیکی عاریس ایزیس ایزین درجه بندی CNTR ها منجر به کاربرد الگوی توزیع درجه بندی شده به لحاظ کابردی تقویت در رفتاری مکانیکی میاده است. تاثیرات درجه بندی CNT ها منجر به کاربرد الگوی توزیع درجه بندی شده به لحاظ کابردی تقویت در رفتاری مکانیکی میاده است. تاثیرات درجه بندی (Shen) مورد بررسی قرار گرفت[۶].

در بسیاری از رشته های های مهندسی مانند زمین شناسی، مهندسی خودرو، توربین گازی، ساختارهای ورقه ای ساخته شده از مواد درجه بندی شده به لحاظ کارکردی مورد استفاده قرار می گیرد که می تواند در معرض بارگیری حرارتی قرار بگیرد. در نتیجه بررسی رفتار مکانیکی ورقه های (صفحه) درجه بندی شده به لحاظ عملکردی در محیط حرارتی توجه زیادی را به خود جلب کرده است[۱۷]. انحنای ترموالاستیک صفحات ساندویجی FG بر اساس تئوری تغییر شکل برش سه گانه اصلاح شده توسط تونسی و همکاران مورد مطالعه قرار گرفته است[۱۸]. علاوه بر این، بوندربا و همکاران رفتار کنشی گرمایی- مکانیکی ورقه های ضخیم FG قرار گرفته بر روی پایه های الاستیک Uinkler- Pasternak را مورد تجزیه و تحلیل قرار دادند[۱۹]. بر مبنای ۴ متغیر تئوری ورقه ی اصلاح شده، تحلیل انحنای ورقه های FG توسط زیدی و همکاران[۲۰] تحت بارگیری مکانیکی گرمایی هیدرویدی ارائه شده است. نظریه ورقه ی سینوسی توسط حمیدی و همکاران[۲۱] برای بررسی انحنای مکانیکی – گرمایی ورقه ی ساندویجی FG به کار گرفته شد. علاوه بر این، بررسی تحقیقات گذشته نشان می دهد که لرزش گرمایی صفحه های FG به طور گسترده مورد بررسی قرار گرفته است. برخی از تحقیقات در مورد تحلیل لرزش گرمایی خطی صفحه های FG ارائه شده است [۲۵-۲۲] و همچنین چندین نویسنده لرزش غیرخطی برای کسب مسیرهای توازن پسا لرزش آن ها را مورد مطالعه قرار داده اند. به منظور ارائه دقیق تحلیل رفتار مکانیکی ورقه ها (صفحات)، مدل های نظری مختلفی ایجاد شده است [۲۹-۲۹]. اخیراً؛ (TOunsi) و همکارانش مطالعات گوناگونی در مورد تحلیل مکانیکی کامپوزیت و ساختارهای عملکردی درجه بندی شده بر مبنای تئوری های پیشرفته صفحات انجام داده اند. برش کارآمد ارتفاعی و نظریه تغییر شکل نرمال توسط Blabid [۳۰] برای تجزیه و تحلیل ورقه های FG بکار برده شده است. Hebali و همکارانش [۳۱] لرزش آزاد و ثابت صفحات FG را بر مبنای نظریه ی جدید تغییر شکل برش هایپربولیک شبه D۳ مورد بررسی قرار دادند. نظریه پنج متغیری صفحات اصلاح شده برای تجزیه و تحلیل لرزش صفحات ساندویجی FG توسط بنون و همکاران [۳۲] معرفي شده است. جابجايي عرضي به بخش هاي كششي ضخامت، برش و انحنا تقسيم شدند كه تعداد معادلات ناشناخته و غالب نظریه معرفی شده را کاهش می دهد.

مجله پژوهش های معاصر در علوم و تحقیقات سال دوم، شماره ۱۸، دی ۱۳۹۹

ISSN: זיאז-סעזנ www.jocrisar.ir

۲. خواص مکانیکی کامپوزیت های تقویت شده با نانو لوله های کربنی مدرج تابعی

فرض شده است که کامپوزیت های تقویت شده با نانو لوله های کربنی از ترکیب نانو لوله های کربنی تک لایه و ماده زمینه ایزوتروپ تشکیل شده است. توزیع نانو لوله های کربنی در راستای ضخامت به صورت یکنواخت و مدرج تابعی در نظر گرفته شده است. مدل های میکرو مکانیکی متفاوتی برای پیش بینی خواص مکانیکی موثر کامپوزیت های تقویت شده با نانو لوله های کربنی ارائه شده است. که از آن جمله می توان به مدل موری-تاناکا و قانون ترکیب اشاره کرد. بر اساس قانون ترکیب تعمیم یافته، مدل یانگ و مدول برشی موثر برای روابط زیر ارائه می شود[۳۳].

$$\begin{split} E_{11} &= \eta_1 V_{cn} E_{11}^{cn} + V_m E^m \qquad (1) \\ \frac{\eta_2}{E_{22}} &= \frac{V_{cn}}{E_{22}^{cn}} + \frac{V_m}{E^m} \qquad (7) \\ \frac{\eta_3}{G_{12}} &= \frac{V_{cn}}{G_{12}^{cn}} + \frac{V_m}{G^m} \qquad (7) \end{split}$$

که در این روابط E_{11}^{cn} و E_{22}^{cn} و G_{12}^{cn} به ترتیب بیانگر مدول یانگ و مدول برشی نانو لوله کربنی بوده و E_{11}^{cn} و E_{22}^{cn} نیز خواص مرتبط با ماده زمینه می باشد. که برای در نظر گرفتن اثرات اندازه در خواص مواد لحاظ شده است و از طریق تطایق نتایج حاصل از قانون ترکیب تعمیم یافته با مدل های میکرومکانیکی تعیین می شود. خواص مواد لحاظ شده است و از طریق تطایق نتایج حاصل از قانون ترکیب تعمیم یافته با مدل های میکرومکانیکی تعیین می شود. خواص مواد لحاظ شده است و از طریق تطایق نتایج حاصل از قانون ترکیب تعمیم یافته با مدل های میکرومکانیکی تعیین می شود. علاوه بر این V_{cn} و V_{cn} نیز به ترتیب کسر حجمی نانو لوله کربنی و ماده زمینه می باشند. و از رابطه V_{cn} با در کست V_{cn} نیزد.

علاوه بر توزیع یکنواخت، سه نوع توزیع مدرج تابعی اعم از FG-X ،FG-O ،FG-A در راستای ضخامت در نظر گرفته شده است. در مابقی توزیع با توجه به شکل ۱ مشخص می باشد. کسر حجمی توزیع نانولوله کربنی در راستای ضخامت برای حالت های مختلف به صورت روابط(۴-۷) می باشد[۳۴].

$$w_{cn} + \left(\frac{\rho^{cn}}{\rho^m}\right) - \left(\frac{\rho^{cn}}{\rho^m}\right) w_{cn} \tag{(A)}$$

که در رابطه $^{
m cn}$ و $^{
m cn}$ به ترتیب بیانگر چگالی ماده زمینه در کامپوزیت بوده و $^{
m m}$ و $^{
m cn}$ به ترتیب بیانگر چگالی ماده زمینه و نانو لوله می باشد. چگالی کلی نانو کامپوزیت نیز از رابطه (۹) بدست می آید. ISSN: זיזיז-סעזי www.jocrisar.ir

مجله پژوهش های معاصر در علوم و تحقیقات

سال دوم، شماره ۱۸، دی ۱۳۹۹

$$\rho = V_{cn}\rho^{cn} + V_m\rho^m \tag{9}$$

که در این روابط V^{cn}12 و Vm به ترتیب ضریب پواسون نانو لوله و ماده زمینه می باشد. همچنین ضریب پواسون نانو کامپوزیت نیز از روابط (۱۰) بدست می آید.

$$v_{12} = V_{cn} v_{12}^{cn} + V_m v^m \tag{(1.)}$$

۲. ۱. توزیع نانو لوله در بستر پلیمر

در این مقاله چهار نوع آرایش نانو لوله با طول، عرض و ضخامت ورق متفاوت در نظر گرفته شده است. در مواد مدرج تابعی خواص آنها در امتداد ضخامت به طور ملایم و پیوسته تغییر می کند. در حالت UD توزیع نانو لوله ها در جهت ضخامت یکنواخت می باشد اما در حالت FG-V در جهت ضخامت از سمتی به طور منظم کاهش یافته و در سمت دیگر به حداقل خود می رسد.

۳. مدلسازی عددی تحلیل ارتعاشات ورق های نانوکامپوزیتی

نتایج ارائه شده در این بخش، حاصل مدلسازی عددی تحلیل ارتعاشات ورق های نانوکامپوزیتی که به منظور محاسبه فرکانس های طبیعی ورق های ساخته شده از نانو کامپوزیت می باشد. در این بخش نتایج عددی ارائه شده که به منظور اعتبار سنجی ابتدا با نتایج سایر مقالات مقایسه شده، سپس تاثیر عوامل مختلف سازه شامل نوع الگوی توزیع و کسر حجمی نانو لوله، پارامتر های هندسی و شرایط مرزی بر رفتار ارتعاشی ورق نانو کامپوزیتی بررسی می شود.

ISSN: דואס-סעדי www.jocrisar.ir

سال دوم، شماره ۱۸، دی ۱۳۹۹

۲. ۱. خواص فیزیکی نانو کامپوزیت های هدفمند

فرض می شود که ماده نانو کامپوزیت هدفمند به صورت ترکیبی از فاز زمینه و فاز تقویت کننده می باشد. عنوان ماده زمینه از ماده پلی متیل متاکریلیت (PMMP) تشکیل می شود که خواص مکانیکی آن به صورت زیر می باشد.

 $E^m = 2.5 \text{ GPa}$, $P^m = 1150 \text{Kg/m}^3$, $V^m = 0.34$

همچنین فاز تقویت کننده شامل نانو لوله های کربنی تک لایه نوع آرمیچر می شود که خواص آن به صورت زیر ارئه می شود.

 $E^{cn}{}_{11} = 5.6466 TPa$, $E_{22}{}^{cn} = 7.0800 TPa$, $G_{12}{}^{cn} = 1.9445 TPa$, $V_{12}{}^{cn} = 0.175$, $P^{cn} = 1400 \text{kg/m}^3$ به منظور لحاظ نمودن اثرات اندازه در خواص مكانيكى نانو لوله هاى كربنى، ضرايب پارامتر كارايى در قانون تركيب اصلاح شده بكار گرفته مى شوند كه اين ضرايب از طريق مطابقت نتايج حاصل از روش ديناميك مولكوليو قانون تركيب تعميم يافته محاسبه مى گردد. بر اساس تحقيق ارائه شده توسط شن ضرايب n_{r} , n_{r} , n_{r} براى سه مقدار مختلف كسر حجمى نانو لوله ها، به صورت زير ارئه مى شود.

 $V_{cn} = 0.11 : \boldsymbol{\eta}_{1} = ..169, \boldsymbol{\eta}_{r} = ..976, \boldsymbol{\eta}_{r} = ..976$ $V_{cn} = 0.14 : \boldsymbol{\eta}_{1} = ..169, \boldsymbol{\eta}_{r} = ..961, \boldsymbol{\eta}_{r} = ..961$ $V_{cn} = 0.17 : \boldsymbol{\eta}_{1} = ..169, \boldsymbol{\eta}_{r} = 1.761, \boldsymbol{\eta}_{r} = 1.761$

همچنین شایان ذکر است نتایج عددی بر اساس فرکانس طبیعی بی بعد ورق ارئه می گردد که به صورت رابطه (۱۱) تعریف می شود.

$$\tilde{\omega} = \omega (a^2/h) \sqrt{\rho^m/E^m} \tag{11}$$

۳. ۲. اعتبار سنجی نتایج

در بخش حاضر، نتایج حاصل از این پژوهش با نتایج موجود در مقاله ای دیگر مقایسه می گردد. جدول زیر بیانگر مقایسه ای میان نتایج مربوط به فرکانس طبیعی بی بعد ورق ساخته شده از نانو کامپوزیت هدفمند با نتایج مقاله می باشد. نتایج برای الگوی توزیع و کسر حجمی های متفاوت نانو لوله در شرایط گیر(CCCC) دار ارئه شده است.

					9. 7	07 .	1.5.5			
V _{CNT}	b/h	Modes(m,n)	UD		FG-V		FG-O		FG-X	
			مرجع[٣٥]	Abaqus	مرجع[٣٥]	Abaqus	مرجع[٣٥]	Abaqus	مرجع[٣٥]	Abaqus
	10	1	17.625	17.604	17.211	16.509	16.707	15.657	18.083	18.183
		2	23.041	22.893	22.818	22.178	22.253	21.416	23.606	23.545
		4	33.592	32.945	33.07	31.413	32.378	29.919	34.338	33.697
		5	33.729	33.594	33.552	32.599	32.857	31.904	34.467	34.568
		6	37.011	36.877	36.528	35.039	35.809	33.652	37.447	37.617
0 11		7	37.317	37.276	37.437	37.43	37.447	37.421	37.786	37.858
0.11										
	20	1	28.4	28.318	26.304	25.365	24.486	23.02	30.421	30.718
		2	33.114	32.924	31.496	30.587	29.795	28.493	35.036	35.208
		4	44.559	43.681	43.589	42.197	41.895	40.309	46.48	45.924
		5	59.198	58.792	56.249	53.534	53.557	49.546	61.98	62.215
		6	61.851	60.413	59.221	56.686	56.617	52.885	64.562	62.785
		7	63.043	61.52	62.608	59.642	60.719	57.774	65.174	64.863

جدول۱- درصد حجمی ۰٫۱۱

ISSN: ۲٦٧٦_0٧٦٤

مجله پژوهش های معاصر در علوم و تحقیقات

www.jocrisar.ir

سال دوم، شماره ۱۸، دی ۱۳۹۹

50	1	39.73	39.482	34.165	33.281	30.303	28.705	46.166	46.967
	2	43.876	43.524	39.043	38.132	35.444	33.955	49.934	50.6
	4	54.768	53.695	51.204	49.689	47.878	45.983	60.225	60.122
	5	74.488	71.254	72.202	68.647	68.842	65.127	79.534	77.203
	6	98.291	95.77	86.291	82.775	77.468	72.149	108.694	101.71
	7	100.537	96.856	89.054	85.643	80.46	75.332	110.921	111.581

V _{CNT}	b/h	Modes(m,n)	UD		FG-V		FG-O		FG-X	
eitt		(, ,	[70]	Abagua	[*0]	Abagua	[***]	Abagua	[***]	Abaqua
			م جع الا ا	Abaqus	مرجعوان	Abaqus	مرجعرتا	Abaqus	مرجعوانا	Abaqus
	10	1	18.127	18.114	17.791	17.088	17.311	16.298	18.593	18.604
		2	23.572	23.437	23.413	22.775	22.782	21.977	24.243	24.117
		4	34.252	33.615	34.101	32.462	33.441	31.107	35.224	34.516
		5	34.65	34.528	34.275	33.321	33.441	32.501	35.441	35.317
		6	37.921	37.804	37.538	36.069	36.788	34.745	38.169	38.418
		7	37.972	37.958	38.159	38.175	38.169	38.145	38.789	38.691
						2				
	20	1	29.911	29 864	27.926	26.946	26.127	25.783	31.857	32.025
		2	34.516	34.355	32.976	32.037	31.186	31.553	36.487	36.569
0.14		4	45.898	45.063	44.989	43.584	43.034	44.165	48.087	47.487
		5	61.628	61.58	58.951	56.201	56.403	53.997	64.334	64.261
		6	64.199	61.898	61.816	59.255	59.277	57.504	66.912	64.723
		7	64.496	63.915	64.135	61.155	61.793	62.86	67.148	66.937
				17		77				
	50	1	64.496	43.344	37.568	36.632	33.369	31.647	50.403	51.225
		2	47.479	47.153	42.175	41.221	38.145	36.529	54.025	54.745
		4	57.968	56.956	53.963	52.429	50.055	48.061	64.112	64.123
		5	77.395	74.245	74.785	71.232	70.646	66.867	83.394	81.224
		6	106.371	98.765	94.022	90.302	84.799	79.173	112.896	106.05
		7	106.487	104.951	96.573	92.977	87.511	82.078	119.134	119.558

جدول۲- درصد حجمی ۰٫۱۴

جدول۳- درصد حجمی ۰٫۱۷

V _{CNT}	b/h	Modes(m,n)	UD	~	FG-V		FG-O		FG-X	
			مرجع[٣٥]	Abaqus	مرجع[٣٥]	Abaqus	مرجع[٣٥]	Abaqus	مرجع[٣٥]	Abaqus
	10	1	22.011	21.964	21.544	20747	20.833	19.76	22.748	22.624
		2	28.801	28.593	28.613	27.897	27.651	26.849	29.878	29.606
		4	42.015	41.173	41.431	38.049	40.501	37.958	43.293	42.593
		5	42.132	41.92	42.119	41.012	40.781	39.891	43.588	42.875
0.17		6	46.25	46.039	45.796	44.094	44.699	42.523	47.071	47.202
		7	46.694	46.616	47.055	47.095	47.071	47.076	47.606	47.496
	20	1	35.316	35.198	32.686	31-609	30.325	28.729	38.062	38.081
		2	41.253	40.993	39.279	38.256	36.848	35.477	44.105	44.034
		4	55.627	54.496	54.56	52.96	51.757	50.093	58.927	58.036

ISSN: ۲٦٧٦_٥٧٦٤

سال دوم، شماره ۱۸، دی ۱۳۹۹

www.jocrisar.ir

	5	73.769	73.208	70.149	66.993	66.657	62.34	77.64	77.051
	6	77.109	75.459	73.926	71.004	70.401	66.432	81.04	79.788
	7	78.801	76.636	78.522	74.983	75.018	71.779	82.932	80.582
50	1	49.074	48.787	42.078	41.025	37.247	35.358	57.245	58.029
	2	54.324	53.896	48.309	47.249	43.577	41.866	62.236	62.885
	4	68.069	66.718	63.755	61.987	58.89	56.766	75.746	75.503
	5	92.868	88.785	90.293	86.03	84.717	80.471	100.85	97.893
	6	121.669	119.558	106.513	102.313	95.462	89.243	137.913	129.739
	7	124.518	119.897	110.055	105.998	99.142	93.183	138.485	137.864

نتایج برای الگوی توزیع و کسر حجمی های متفاوت نانو لوله در شرایط ساده (SSSS) ارائه شده است.

V _{CNT}	b/h	Modes(m,n)	UD		FG-V		FG-O		FG-X	
			مرجع[٣٥]	Abaqus	مرجع[٣٥]	Abaqus	مرجع[٣٥]	Abaqus	مرجع[٣٥]	Abaqus
	10	1	13.532	13.467	12.452	12.883	11.55	10.868	14.616	14.725
		2	17.7	17.543	17.06	17.128	16.265	15.641	18.646	18.636
		4	19.449	26.986	19.499	26.877	19.499	25.765	19.499	28.077
		5	19.449	32.375	19.499	29.849	19.499	27.986	19.499	33.685
		6	27.569	34.367	27.34	32.186	26.513	30.451	28.519	35.632
		7	32.563	37.223	31.417	37.363	30.28	36.996	33.598	44.592
					GAN P					
	20	1	17.355	17.285	15.11	16.544	13.523	12.845	19.939	20.294
		2	21 511	21.303	19.903	20.783	18.486	17.855	23.776	23.969
0.11		4	32.399	31.691	31.561	31.508	30.166	29.285	34.389	34.036
		5	38.898	48.173	38.998	45.811	38.998	41	38.998	50.555
		6	38.898	52.059	38.998	48.22	38.998	43.602	38.998	57.396
		7	50.199	52.087	47.739	48.295	43.948	46.303	52.268	59.082
			0.0		0		4			
	50	1	19.223	19.146	16.252	18.348	14.302	13.658	22.984	23.312
		2	23.408	23.222	21.142	22.641	19.373	18.807	26.784	26.92
		4	34.669	33.955	33.35	33.728	31.615	30.765	37.591	37.038
		5	54.043	51.79	53.43	51.932	51.37	49.231	56.946	54.651
		6	70.811	70.016	60.188	58.4	53.035	49.891	83.15	79.01
		7	72.9	72.077	62.78	61.127	55.823	52.761	84.896	83.651

جدول۴- درصد حجمی ۰٫۱۱

۰,۱۴	درصد حجمی	جدول۵-	
	EC V		Б

					•					
VCNT	b/h	Modes(m,n)	UD		FG-V		FG-O		FG-X	
			مرجع[٣٥]	Abaqus	مرجع[٣٥]	Abaqus	مرجع[٣٥]	Abaqus	مرجع[٣٥]	Abaqus
0.14	10	1	14.306	14.263	13.256	13.661	12.391	11.463	15.368	15.449
0.11		2	18.362	18.201	17.734	17.809	16.848	16.22	19.385	19.351
		4	19.791	27.689	19.879 خ	27.577ش	19.879	26.267	19.879	28.95

ISSN: ۲٦٧٦-٥٧٦٤

مجله پژوهش های معاصر در علوم و تحقیقات

www.jocrisar.ir

سال دوم، شماره ۱۸، دی ۱۳۹۹

	5	19.791	33.491	19.879	31.096	19.879	29.403	19.879	34.526
	6	28.23	35.436	28.021	33.361	27.003	31.726	29.398	36.506
	7	33.646	37.909	32.678	38.068	31.633	38.11	34.631	38.388
20	1	18.921	18.878	16.51	18.07	14.784	14.062	21.64247	21.998
	2	22.867	22.704	21.087	22.113	19.462	18.793	25.35981	25.577
	4	33.57	32.917	32.617	32.691	30.906	30.006	35.93751	35.641
	5	39.583	42.453	39.759	49.098	39.759	44.308	39.75897	52.409
	6	39.583	55.365	39.759	49.556	39.759	46.684	39.75897	60.231
	7	51.422	57.135	51.078	51.344	47.341	47.015	54.06184	61.865
50	1	21.354	21.316	17.995	17.252	15.801	15.099	25.555	26.202
	2	25.295	25.156	22.643	24.462	20.563	19.941	29.192	29.697
	4	36.267	35.61	34.66	35.315	32.509	31.622	39.833	39.776
	5	55.608	53.414	54.833	53.519	52.184	50.17	59.333	57.714
	6	78.11	77.405	66.552	64.64	58.748	55.359	87.814	82.803
	7	80.015	77.781	68.94	67.163	61.277	57.972	91.299	92.517

جدول ۶- درصد حجمی ۰٫۱۷

V _{CNT}	b/h	Modes(m,n)	UD		FG-V		FG-O		FG-X	
			مرجع[٣٥]	Abaqus	مرجع[٣٥]	Abaqus	مرجع[٣٥]	Abaqus	مرجع[٣٥]	Abaqus
	10	1	16.815	16.738	15.461	16.088	14.282	13.534	18.278	18.288
		2	22.063	21.827	21.307	21.474	20.091	19.445	23.541	23.409
		. 4	24.337	33.739	24.511	33.788	24.512	32.03	24.512	35.607
		5	24.337	40.407	24.511	37.442	24.512	35.341	24.512	41.736
		6	34.448	42.917	34.273	40.419	32.766	38.367	36.245	44.33
		7	40.63	46.616	39.263	46.908	37.763	46.431	42.15	47.461
			190	000	D. B. C. C.	3000	1.3/			
	20	1	21.456	21.365	18.638	20.492	16.628	15.84	24.764	25.098
		2	26.706	26.456	24.734	25.904	22.739	22.051	29.819	29.977
0.17		4	40.401	39.538	39.471	39.512	37.139	36.22	43.612	43.151
		5	48.674	60.235	49.023	56.929	49.024	51.069	49.024	64.494
		6	48.674	64.658	49.023	60.035	49.024	54.291	49.024	70.995
		7	62.723	67.058	59.191	60.693	54.367	57.34	66.616	73.255
						•				
	50	1	23.697	23.607	19.982	22.621	17.544	16.766	28.413	29.061
		2	28.987	28.768	26.204	28.112	23.783	23.148	33.434	33.912
		4	43.165	42.299	41.646	42.22	38.855	37.952	47.547	47.357
		5	67.475	64.707	66.943	65.225	63.179	60.799	72.57	70.496
		6	87.385	82.215	74.03	71.864	65.154	61.39	102.939	102.28
		7	90.031	89.028	77.343	75.371	68.579	64.946	105.334	104.043

ISSN: דזעז_סעז נ www.jocrisar.ir

سال دوم، شماره ۱۸، دی ۱۳۹۹

۳. ۳. بررسی نتایج عددی

به منظور بررسی نتایج عددی، فرکانس های طبیعی بی بعد ورق مستطیلی (مرکز سوراخ) ساخته شده از نانو کامپوزیت هدفمند به ازای مقادیر مختلف ابعاد و شرایط مرزی مختلف ارائه شده است. و در دو حالت تکیه گاهی گیر دار و ساده بررسی می شود.

A

۳. ۳. ۱. در این جدول نسبت B متغیر بوده و بقیه ابعاد ثابت می باشند.

در جداول (۷ و ۸) نسبت طول ورق از ۰٫۵ به تدریج اضافه شده و هر چه این نسبت بیشتر می شود مقدار فرکانس طبیعی ورق نیز بیشتر شده و ارتعاش بیشتری خواهند داشت. در این حالت، ضخامت (h=0.05) و قطر سوراخ (d=0.03) ثابت هستند.

V _{cnt}	نوع مدرج تابعي	$\frac{A}{B} = 0.5$	$\frac{A}{B}=1$	$\frac{A}{B} = 1.5$	$\frac{A}{B}=2$	$\frac{A}{B}=4$
0.11	UD	17.651	31.203	37.59	45.08	112.85
	FGV	16.493	27.894	33.416	41.198	111.97
	FGX	18.25	34.082	42.471	50.796	119.64
	FGO	15.597	25.2	30.022	37.75	107.87
0.14	UD	18.18	32.978	40.252	48.035	116.18
	FGV	17.095	29.706	35.827	43.716	114.9
	FGX	18.675	35.649	45.23	54.259	124.76
	FGO	16.277	27.015	32.149	39.749	109.5
0.17	UD	22.024	38.773	46.642	56.007	141.05
	FGV	20.719	34.719	41.507	51.323	140.74
	FGX	22.683	42.302	52.835	63.625	153.08
	FGO	19.699	45.03	62.861	86.04	261.92

جدول۷- بررسی تاثیر طول ورق در فرکانس طبیعی (دور ورق گیر دار CCCC)

جدول ۸- بررسی تاثیر طول ورق در فرکانس طبیعی (دور ورق گیردار SSSS)

V_{cnt}	نوع مدرج تابعي	$\frac{A}{B} = 0.5$	$\frac{A}{B}=1$	^A <u></u> <i>B</i> =1.5	<u>_</u>	<u>_</u>
0.11	UD	11.24	13.925	16.347	19.812	50.284
	FGV	10.868	13.426	15.839	19.387	50.538
	FGX	12.283	16.056	18.968	22.503	53.271
	FGO	9.172	10.75	13.062	16.821	48.155
0.14	UD	11.851	15.032	17.653	21.123	51.707
	FGV	11.5	14.523	17.107	20.654	51.964
	FGX	12.878	17.282	20.568	24.24	55.546
	FGO	9.818	11.639	13.935	17.606	48.829
0.17	UD	13.975	17.244	20.26	24.607	62.833

ISSN: ۲٦٧٦-٥٧٦٤

www.jocrisar.ir

سال دوم، شماره ۱۸، دی ۱۳۹۹

FGV	13.577	16.668	19.693	24.198	63.672
FGX	13.366	20.002	23.674	28.269	68.231
FGO	11.388	23.893	30.966	41.053	120.64

A

۲. ۳. ۲. در این جدول نسبت h متغیر بوده و بقیه ابعاد ثابت می باشند.

در جداول (۹ و ۱۰) با دو شرط مرزی گیر دار و ساده، تاثیر ضخامت بر فرکانس طبیعی بررسی شده بطوری که ضخامت از ۰٫۰۲ تا ۰٫۱ متغیر بوده و در این حالت طول، عرض و قطر سوراخ ثابت هستند.

مقدار ضخامت متغير A=1 B=1 مقدار ضخامت

V _{cnt}	نوع مدرج تابعي	h=0.02	h=0.04	h=0.06	h=0.08	h=0.1
0.11	UD	44.664	37.421	30.839	25.944	22.187
	FGV	38.649	33.465	28.22	24.127	20.852
	FGX	52.266	41.235	32.947	27.169	22.963
	FGO	33.744	30.078	25.992	22.608	19.767
0.14	UD	48.598	39.65	32.245	26.875	22.855
	FGV	42.14	35.784	29.715	25.153	21.583
	FGX	56.691	43.379	34.172	27.956	23.525
	FGO	36.844	32.302	27.526	23.705	20.587
0.17	UD	55.285	46.493	38.386	32.34	27.681
	FGV	47.746	41.596	35.252	30.238	26.188
	FGX	64.912	51.392	41.033	33.84	28.606
	FGO	41.561	37.309	32.468	28.387	24.905

جدول٩- بررسی تاثیر ضخامت ورق در فرکانس طبیعی (دور ورق گیردار CCCC)

جدول۱۰- بررسی تاثیر ضخامت ورق در فرکانس طبیعی (دور ورق گیردار SSSS)

V_{cnt}	نوع مدرج تابعي	h=0.02	h=0.04	h=0.06	h=0.08	h=0.1
0.11	UD	14.415	13.612	12.651	11.784	10.925
	FGV	13.895	13.154	12.24	11.41	10.585
	FGX	17.011	15.748	14.32	13.078	11.928
	FGO	10.972	10.577	10.072	9.615	9.116
0.14	UD	15.697	14.719	13.551	12.512	11.512
	FGV	15.161	14.239	13.128	12.133	11.175
	FGX	18.554	16.991	15.277	13.817	12.508
	FGO	11.903	11.416	10.804	10.248	9.657
0.17	UD	17.84	16.866	15.694	14.637	13.584
	FGV	17.223	16.34	15.243	14.243	13.241
	FGX	21.235	19.665	17.89	16.348	14.921
	FGO	13.482	13.022	12.43	11.896	11.304

ISSN: דזעז-סעז נ www.jocrisar.ir

سال دوم، شماره ۱۸، دی ۱۳۹۹

d

۳. ۳. ۳. در این جدول قطر سوراخ 🗛 متغیر بوده و بقیه ابعاد ثابت می باشند.

در جداول (۱۱ و ۱۲) با دو شرط مرزی گیر دار و ساده، تاثیر قطر سوراخ در مرکز بر فرکانس طبیعی بررسی شده و در این حالت طول، عرض و ضخامت ثابت هستند.

. h=0.05 A=1 B=1 مقدار قطر سوراخ نسبت به طول متغیر می باشد

V _{cnt}	نوع مدرج تابعي	$\frac{a}{A} = 0.1$	$\frac{a}{A} = 0.2$	$\frac{a}{A} = 0.3$	$\frac{a}{A}=0.4$	$\frac{a}{A} = 0.5$
0.11	UD	28.146	29.011	31.199	34.046	36.982
	FGV	25.189	25.878	27.889	30.808	34.011
	FGX	30.655	31.747	34.082	36.828	39.882
	FGO	22.819	23.367	25.2	28.047	31.366
0.14	UD	29.717	30.678	32.978	35.784	38.772
	FGV	26.789	27.577	29.704	32.665	35.823
	FGX	32.022	33.232	35.649	38.393	41.569
	FGO	24.429	25.061	27.019	29.904	33.103
0.17	UD	34.984	36.048	38.776	42.342	46.034
	FGV	31.377	32.213	34.72	38.4	42.465
	FGX	38.01	39.362	42.302	45.964	49.816
	FGO	28.455	29.113	31.388	34.929	39.031

جدول ۱۱- بررسی تاثیر قطر سوراخ ورق در فرکانس طبیعی (دور ورق گیردار CCCC)

ی تاثیر قطر سوراخ ورق در فرکانس طبیعی (دور ورق گیردار SSSS)	جدول ۱۲- بررس
a a a	a

V _{cnt}	نوع مدرج تابعي	$\frac{a}{A} = 0.1$	$\frac{a}{A} = 0.2$	$\frac{a}{A}=0.3$	$\frac{d}{A}=0.4$	$\frac{a}{A} = 0.5$
0.11	UD	16.401	15.04	13.916	13.163	12.778
	FGV	15.718	14.45	13.418	12.73	12.397
	FGX	19.197	17.488	16.056	15.066	14.501
	FGO	12.305	11.448	10.759	10.352	10.257
0.14	UD	17.862	16.287	15.032	14.156	13.677
	FGV	17.136	15.699	14.519	13.718	13.295
	FGX	20.788	18.885	17.282	16.161	15.503
	FGO	13.433	12.443	11.644	11.14	10.964
0.17	UD	20.292	18.622	17.254	16.32	15.855
	FGV	19.482	17.929	16.67	15.834	15.441
	FGX	23.775	21.722	20.002	18.816	18.155
	FGO	15.175	14.114	13.263	12.76	12.642

ISSN: ۲٦٧٦-٥٧٦٤ www.jocrisar.ir مجله پژوهش های معاصر در علوم و تحقیقات

سال دوم، شماره ۱۸، دی ۱۳۹۹

۳. ۳. ۴. در این جدول تمامی ابعاد و اندازه ورق ثابت در نظر گرفته شده و سپس تحت هشت شرایط مرزی فرکانس طبیعی را بدست آوردیم.

ضخامت h، قطر سوراخb، طولA، عرضB h=0.05 d=0.03 A/B=1 h=0.05 d=0.03 a/B=1h=0.05 d=0.03 d=0.03 d=0.05 d=0

ورق	شرط مرزی دور	دور گیردار	دور گیردار	دور گیردار	دور ساده	دور ساده	دور ساده	دور ازاد	دور ازاد	
، مرکز	شرط مرزی دایرد	دايره ازاد	دايره ساده	دايره گيردار	دايره گيردار	دايره ساده	دايره ازاد	دايره ساده	دایره گیردار	
V_{cnt}	نوع مدرج تابعي									
0.11	UD	31.201	43.357	48.872	34.157	29.492	13.925	3.763	6.15	
	FGV	27.894	41.598	47.413	33.899	29.093	13.426	3.675	6.103	
	FGX	34.082	45.561	50.97	36.467	31.918	16.056	3.92	6.42	
	FGO	25.2	39.576	45.579	31.543	26.462	10.759	3.504	5.879	
0.14	UD	32.981	44.792	50.303	35.435	30.8	15.044	3.862	6.297	
	FGV	29.707	43.052	48.857	35.159	30.384	14.53	3.785	6.258	
	FGX	35.654	47.071	52.541	38.091	33.515	17.299	4.042	6.629	
	FGO	27.015	40.85	46.805	32.399	27.371	11.639	3.596	5.986	
0.17	UD	38.772	54.104	61.028	42.604	36.741	17.242	4.7	7.689	
	FGV	34.725	52.207	59.548	42.528	36.476	16.678	4.625	7.672	
	FGX	42.302	57.37	64.3	46.122	40.247	20.002	4.975	8.211	
	FGO	31.388	49.317	56.837	39.142	32.798	13.263	4.36	7.282	
	رتال حاض علوم اشابی									

جدول ۱۳– بررسی تاثیر شرایط مرزی متفاوت در فرکانس طبیعی

۴. تصاویر مربوط به شکل مودهای خروجی از نرم افزار Abaqus

مشخصات شکل مود:

درصد حجمی نانو لوله	نوع مدرج تابعي	فركانس طبيعي	نوع شرایط مرزی	جدول مربوطه
•.11	UD	۳۱.۲۰۳	گیردار(CCCC)	جداول۷-۳
ضخامت	قطر دايره	طول	عرض	تعداد لايه
۰.۰۵	۰.۰۳	١	١	الايه

شکل۲- شکل مود اول UD ۱ لایه

مشخصات شکل مود:

درصد حجمی نانو لوله	نوع مدرج تابعي	فركانس طبيعي	نوع شرایط مرزی	جدول مربوطه
•.1۴	FG-O	1.14	سادہ(SSSS)	جداول ۲۰–۳
ضخامت	قطر دايره	طول	عرض	تعداد لايه
۸.۰۸	•.•٣	1	١	۳۱لايه

شکل۳- شکل مود اول FG-O لایه

۵. نتیجهگیری

ورق ها در بسیاری از سازه های مهندسی کاربرد گسترده ای دارند. در برخی از این کاربردها، ورق ها تحت بارگذاری دینامیکی قرار گرفته و دچار ارتعاش می شوند. از این رو، تحلیل ارتعاشات چنین سازه هایی حائز اهمیت می باشد. و از طرفی پیشرفت های ایجاد شده در زمینه تکنولوژی های مربوط به علوم مواد، محققان را بر آن داشت تا با بکارگیری مواد پیشرفته در این سازه ها عملکرد آن ها را بهبود ببخشند. با توجه به توسعه مواد هدفمند در سالیان اخیر، تحقیقات در زمینه رفتار مکانیکی سازه های ساخته شده از این مواد، گسترش یافته است. از طرفی خواص منحصر به فرد نانو لوله های کربنی اعم از مقاومت بالا، سختی بالا و چگالی پایین باعث شده تا این مواد به عنوان یک تقویت کننده مناسب در مواد کامپوزیتی استفاده شوند. با استفاده از ایده بکار رفته در مواد هدفمند، نانو لوله های کربنی به عنوان یک تقویت کننده، به صورت هدفمند در مواد کامپوزیتی توزیع شده و نانو کامپوزیت های هدفمند تقویت شده با نانو لوله کربنی را بوجود میآورند. نتایج ارائه شده در تحقیق حاضر، حاصل مدلسازی عددی تحلیل ارتعاشات ورق های نانوکامپوزیتی که به منظور محاسبه فرکانس های طبیعی ورق های ساخته شده از نانو کامپوزیت می باشد. در این پژوهش نتایج عددی ارائه شده که به منظور اعتبار سنجی ابتدا با نتایج سایر مقالات مقایسه شده، سپس تاثیر عوامل مختلف سازه شامل نوع الگوی توزیع و کسر حجمی نانو لوله، پارامتر های هدندسی و شرایط مرزی بر رفتار ارتعاشی ورق نانو کامپوزیت می باشد. در این پژوهش نتایج عددی ارائه شده که به

۶. منابع و مراجع

[1] Yakobson BI, Avouris P. Mechanical properties of carbon nanotubes. Carbon Nanotub Top Appl Phys 2001;80:287e327.

[2] Ho YH, Chang CP, Shyu FL, Chen RB, Chen SC, Lin MF. Electronic and optical properties of double-walled armchair carbon nanotubes. Carbon 2004;42: 3159e67.

[3] Lopez Manchado MA, Valentini L, Biagiotti J, Kenny JM. Thermal and me-chanical properties of carbon nanotubes-polypropylene composites prepared by melt processing. Carbon 2005;43:1499e505.

[4] Sumfleth J, Prehn K, Wichmann MHG, Wedekind S, Schulte K. A comparative study of the electrical and mechanical properties of epoxy nanocomposites reinforced by CVD-and Arc-Grown multi-wall carbon nanotubes. Compos Sci Technol 2010;70:173e80.

[5] Esawi AMK, Farag MM. Carbon nanotube reinforced composites: potential and current challenges. Mater Des 2007;28:2394e401.

[6] Fiedler B, Gojny FH, Wichmann MHG, Nolte MCM, Schulte K. Fundamental aspects of nano-reinforced composites. Compos Sci Technol 2006;66: 3115e25.

[7] de Villoria RG, Miravete A, Cuartero J, Chiminelli A, Tolosana N. Mechanical properties of SWNT/epoxy composites using two different curing cycles. Compos Part B Eng 2006;37:273e7.

[8] Bonnet P, Sireude D, Garnier B, Chauvet O. Thermal properties and percolation in carbon nanotube-polymer composites. Appl Phys Lett 2007;91:1910.

[9] Han Y, Elliott J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 2007;39:315e23.

[10] Jiang Q, Wang X, Zhu Y, Hui D, Qiu Y. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Compos Part B Eng 2014;56:408e12.

[11] Fidelus JD, Wiesel E, Gojny FH, Schulte K, Wagner HD. Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Compos Part A Appl Sci Manuf 2005;36:1555e61. [12] Zhu R, Pan E, Roy AK. Molecular dynamics study of the stressestrain behavior of carbon-nanotube reinforced Epon 862 composites. Mater Sci Eng A2007;44:51e7.

[13] Kim MT, Rhee KY, Lee JH, Hui D, Lau AK. Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. Compos Part B Eng2011;42:1257e61.

[14] Wuite J, Adali S. Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis. Compos Struct 2005;71:388e96.

[15] Vodenitcharova T, Zhang LC. Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube. Int J solids Struct2006;43:3006e24.

[16] Shen HS. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos Struct2009;91:9e19.

[17] Hetnarski RB, Eslami MR, Gladwell GML. Thermal stresses: advanced theory and applications. New York: Springer; 2009.

[18] Tounsi A, Houari MSA, Benyoucef S. A refined trigonometric shear deforma-tion theory for thermoelastic bending of functionally graded sandwich plates. Aerosp Sci Technol 2013;24:209e20.

[19] Bouderba B, Houari MSA, Tounsi A. Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations. Steel Compos Struct 2013;14:85e104.

[20] Zidi M, Tounsi A, Houari MSA, B eg OA. Bending analysis of FGM plates under hygro-thermomechanical loading using a four variable refined plate theory. Aerosp Sci Technol 2014;34:24e34.

[21] Hamidi A, Houari MSA, Mahmoud SR, Tounsi A. A sinusoidal plate theory with5-unknowns and stretching effect for thermomechanical bending of func-tionally graded sandwich plates. Steel Compos Struct 2015;18:235e53.

[22] Kiani Y, Bagherizadeh E, Eslami MR. Thermal buckling of clamped thin rect-angular FGM plates resting on Pasternak elastic foundation (Three approxi-mate analytical solutions). ZAMM J Appl Math Mechanics/Zeitschrift für Angewandte Math und Mech 2011;91:581e93.

[23] Kiani Y, Eslami MR. An exact solution for thermal buckling of annular FGM plates on an elastic medium. Compos Part B Eng 2013;45:101e10.

[24] Zhang LW, Zhu P, Liew KM. Thermal buckling of functionally graded plates using a local Kriging meshless method. Compos Struct 2014;108:472e92.

[25] Bouderba B, Houari MSA, Tounsi A, Mahmoud SR. Thermal stability of func-tionally graded sandwich plates using a simple shear deformation theory. Struct Eng Mech 2016;58:397e422.

[26] Shen HS. Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties. Int J Mech Sci 2007;49:466e78.

[27] Shen HS, Li SR. Postbuckling of sandwich plates with FGM face sheets and temperature-dependent properties. Compos Part B Eng 2008;39:332e44.

[28] Prakash T, Singha MK, Ganapathi M. Thermal snapping of functionally graded materials plates. Mater Des 2009;30:4532e6.

[29] Zhang DG, Zhou HM. Mechanical and thermal post-buckling analysis of FGM rectangular plates with various supported boundaries resting on nonlinear elastic foundations. Thin-Walled Struct 2015;89:142e51.

[30] Belabed Z, Houari MSA, Tounsi A, Mahmoud SR, B eg OA. An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos Part B Eng 2014;60:274e83.

[31] Hebali H, Tounsi A, Houari MSA, Bessaim A, Bedia EAA. New quasi-3D hyperbolic shear deformation theory for the static and free vibration anal-ysis of functionally graded plates. J Eng Mech 2014;140:374e83.

[32] Bennoun M, Houari MSA, Tounsi A. A novelfive-variable refined plate theory for vibration analysis of functionally graded sandwich plates. Mech Adv Mater Struct 2016;23:423e31.

[33] H.S. Shen, Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite cylindrical shells. Composite Part B Engineering, Vol. 43, pp. 1030-1038, 2012.

[34] J. E. Jam, Y. Kiani, Buckling of pressurized functionally graded carbon nanotube reinforced conical shells, Composite Structures, Vol. 125, pp. 586-595, 2015.

[^ro] Ping Zhu, Z.X. Lei, K.M. Liew"Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory" doi:10.1016/j.compstruct.201

