
Advances in Mathematical Finance  
& Applications, 6(1), (2021), 185-199 
DOI: 10.22034/amfa.2020.1892182.1365 

 

Published by IA University of        
Arak, Iran 
Homepage: www.amfa.iau- 
arak.ac.ir 
 

 

 

 
* Corresponding author. Tel.: +982188462174 
E-mail address: h_khaloozadeh@eetd.kntu.ac.ir 

  
                       © 2021. All rights reserved.    
                       Hosting by IA University of Arak Press                
 

 

 

The Tail Mean-Variance Model and Extended Efficient Frontier 
 

Esmat Jamshidi Eini , Hamid Khaloozadeh* 

Department of Systems and Control, K.N. Toosi University of Technology, Tehran, Iran 

  

ARTICLE INFO 

Article history:  
Received 29 January 2020 
Accepted 14 September 2020 
 

Keywords: 
Tail Mean-Variance criterion 
Optimal portfolio selection 
Efficient Frontier 
Skew-Elliptical Distributions  

 
ABSTRACT 

In portfolio theory, it is well-known that the distributions of stock returns often 
have non-Gaussian characteristics. Therefore, we need non-symmetric distribu-
tions for modeling and accurate analysis of actuarial data. For this purpose and 
optimal portfolio selection, we use the Tail Mean-Variance (TMV) model, which 
focuses on the rare risks but high losses and usually happens in the tail of return 
distribution. The proposed TMV model is based on two risk measures the Tail 
Condition Expectation (TCE) and Tail Variance (TV) under Generalized Skew-
Elliptical (GSE) distribution. We first apply a convex optimization approach and 
obtain an explicit and easy solution for the TMV optimization problem, and then 
derive the TMV efficient frontier. Finally, we provide a practical example of 
implementing a TMV optimal portfolio selection in the Tehran Stock Exchange 
and show TCE-TV efficient frontier.  
 

 

1 Introduction 
 

Investment decision making is one of the key issues in financial management. Selecting the appropri-
ate tools and techniques that can make optimal portfolio is one of the main objectives of the invest-
ment world [33]. The main goal of the portfolio selection is the optimal allocation of investments be-
tween different assets, which is based on arbitration between the two criteria of return of a portfolio 
and its risk. So, the most appropriate stocks are determined along with the ratio of each of them. The 
classical Mean-Variance (MV) model, introduced by Markowitz [25], is a fundamental theory that has 
developed the theory of portfolio selection. In the MV model, the expected return of the portfolio and 
the variance of return are considered as investment return and risk, respectively. The MV model is 
defined as follows: 

𝑀𝑉(𝐿) = 𝔼(𝐿) +
1

2
𝜏 𝑉𝑎𝑟(𝐿) )1( 

where 𝜏 > 0 and 𝐿 is a random loss at a portfolio. Every investor wants to obtain a portfolio with the 
highest possible profit at a specified risk or obtain a portfolio with the least possible risk at a specified 
return. A set of the portfolios obtained by effective methods are located on the curve that is called the 
Efficient Frontier [26]. Most statistical studies are based on the normal distribution, but when the data 
set is not symmetric or has a heavy tail, the normal distribution does not correspond to it [29]. Luo et 
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al. [24] Found that the real distribution of the returns is associated with the features of the fat tail and 
high peak, which leads to the attention to the tail risk measurement. A tail risk event occurs when the 
value of an investment deviates more than three times the standard deviation from its average. The 
probability of such an event is very low, but it can have serious negative consequences for financial 

markets and for portfolios. Depending on the side, there may be a left tail risk or right tail. Left tail 
risk takes place on the left side, and it indicates the negative returns of a portfolio. Right tail risk takes 
place on the right side, and it is dealing with the positive returns that can be generated. Fat tails often 
occur in finance but are considered undesirable due to the additional risk involved. Negative risks are 
when everything can go wrong about a project. Nevertheless, the risks are likely to be positive. Inves-
tors tend to think less about positive risk in project management, probably because managers focus 
more on what goes wrong. The reason we are driven down the negative path and often consider risk as 
negative is the result of a human condition where we place more emphasis on protecting the loss than 
achieving a gain. Chow et al. [7] examined the effect of positive and negative tail risk premiums on 
future returns. On a monthly level, They found that the existence of a premium for bearing positive 
tail risk today holds no statistically significant power for lower future returns, while its counterpart for 
bearing negative tail risk has significant predictive power for lower future returns. The Tail Mean-
Variance (TMV) model for portfolio selection was introduced by Landsman [19], and is defined as 
follows: 

𝑇𝑀𝑉 (𝐿) = 𝔼 𝐿 𝐿 > 𝑉𝑎𝑅 (𝐿) + 𝜆 𝑉𝑎𝑟 𝐿 𝐿 > 𝑉𝑎𝑅 (𝐿)  )2( 

where  𝜆 > 0 and 𝐿 is a random loss with an elliptical distribution at a portfolio. The TMV model, 
unlike the MV, focuses on the behavior of the tail of returns distribution through the 𝑞-quantile de-
fined in the Value at Risk (VaR) measure. The TMV measure can help an investor to know the behav-
ior of risk along the tail of return distribution (𝑋 ≥ 𝑉𝑎𝑅 (𝑋)). This issue is very important for finan-

cial managers because they are worried about portfolio performance if there are extreme losses in 
capital markets. The VaR was introduced by G.P. Morgan [28], at confidence level 𝑞 is defined as 

𝑉𝑎𝑅 (𝐿) = 𝑖𝑛𝑓(𝑥 ∈ 𝑅 ∶  𝐹 (𝑥) ≥ 𝑞) )3( 

𝑞 ∈ (0,1) and  𝐹 (𝑥) is the Cumulative Distribution Function (CDF) of loss 𝐿. VaR computation is 
based on the normal distribution of financial data. Although the normal distribution is the most popu-
lar distribution used for modeling, it is not proper for modeling portfolio losses or financial risks [12, 
13]. The real distributions of many financial data have non-Gaussian properties, and when the data set 
is asymmetric, the normal distribution does not fit well [10, 14]. The TMV model in (2) is composed 
of a weighted sum of two risk measures. The first risk measure is Tail Conditional Expectation (TCE), 
introduced by Artzner et al. [1], which provides information about the mean of the tail of the loss dis-
tribution. Compared to the VaR, the TCE measure offers a more conservative measure of risk for the 
same level of confidence 𝑞. This measure was expanded by Panjer for the multivariate normal family 
[31], and was introduced by Landsman and Valdez for Elliptical distribution [23]. Landsman et al. 
[20] obtained the TCE measure for a family of Skew-Elliptical distributions, which named the Gener-
alized Skew-Elliptical (GSE) distributions. The second risk measure is the Tail Variance (TV), pro-
posed by Furman and Landsman [9], which is equal to the deviation of the loss from the mean along 
the tail of the distribution. Jamshidi and Khaloozadeh [15] derived the TV measure for the generalized 
skew-elliptical distributions. Wang et al. [36] studied the TMV model, which includes variables and 



Jamshidi Eini and Khaloozadeh 
 

 

 
 
Vol. 6, Issue 1, (2021) 

 
Advances in Mathematical Finance and Applications  

 
[187] 

 

tail risks, and allocated capital-proportional the asset’s risk, using several risk measures, including 
Value-at-Risk (VaR) and nonlinear weighted (NLW) risk measures. Xu and Mao [37] obtained the 
optimal capital allocation in the structure of the TMV model for multivariate elliptical distributions 
and applied the results to various business units for an insurance company. Owadally and Landsman 
[30] derived a simple and explicit solution for the optimal portfolio on the TMV criterion, which im-
proves on previous work. Jiang et al. [16] derived the explicit solution of the TV for the generalized 
Laplace distribution and optimization of the TMV portfolio. Kim et al. [18] considered the class of the 
univariate and multivariate normal mean-variance mixture (NMVM) distributions and derived the 
conditional tail expectation (CTE) and the Conditional Tail Variance (CTV) for the univariate 
NMVM family. Bauder et al. [5] presented a Bayesian mean-variance analysis for optimal portfolio 
selection under parameter uncertainty. They assumed that the parameters of the return on assets, such 
as mean and covariance, are unknown and used historical data to estimate and solve the problem of 
optimal portfolio selection. Miryekemam et al. [27] developed several approaches to multi-criteria 
portfolio optimization. In order to solve the problem of information in the Tehran Stock Exchange in 
2017, 45 sample stocks have been identified, and with the assumption of normalization of goals, a 
genetic algorithm has been used. Darabi and Baghban [8] studied the application of Clayton Copula in 
Portfolio Optimization and Compared with Markowitz Mean-Variance Analysis. They used copula as 
an alternative measure to model the dependency structure in research. In this regard, given the weekly 
data pertaining to early 2002 until late 2013, They used Clayton-copula to generate an optimized port-
folio for both copper and gold. 

This paper is classified as follows: Next section defines the family of generalized skew-elliptical 
distributions, section 3 formulates the TCE and TV measures for the generalized skew-elliptical dis-
tributions, section 4 presents a simple and explicit formula for the optimal portfolio selection on the 
TMV model and then derives the TMV efficient frontier, section 5 offers a practical example of im-
plementing a TMV optimal portfolio on the Iran Stock Market, section 6 presents a conclusion to the 
paper. 

 

2 Generalized Skew-Elliptical Distributions 
 

The skew-elliptical distributions are constructive in many branches of science, such as statistical 
physic and actuarial science. The elliptical family of distributions was introduced by Kelker [17].  The 
class of skew-normal distributions was introduced by Azzalini [2] and extended to the multivariate 
case by Azzalini and DallaValle [4]. The class of Generalized Skew-Elliptical (GSE) distributions 
was introduced by Azzalini and Capitanio [3]. Branco and Dey [6] extended a general class of multi-
variate Skew-Elliptical distributions and analyzed various examples such as the skew-normal, skew-
Pearson type 2, and skew-student-t. Hu and Kercheval [11] showed that the Student t and Skewed t 
distributions can be efficiently fitted to the data and is more proportional to the actual returns than the 
normal distribution. In this paper, we use the generalized skew-elliptical distributions. Consider 
𝒀~𝐺𝑆𝐸 (𝝁, Σ, 𝜸, 𝑔 , 𝐻) be an n-variate skew-elliptical random vector including mean vector 𝝁, 𝑛 × 𝑛 
positive definite matrix 𝛴 and 𝑔  a generator function, where 𝝁 ∈ 𝑅  and 𝛴 > 0. 

𝑓𝒀(𝑦) = 2|𝛴| / 𝑔( )
1

2
(𝑦 − 𝝁) 𝛴 (𝑦 − 𝝁) 𝐻 𝜸 𝛴 / (𝑦 − 𝝁)  )4( 
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here |𝛴| 𝑔 (𝑦 − 𝝁) 𝛴 (𝑦 − 𝝁)  is a Probability Density Function (PDF) of n-variate Elliptical 

distribution 𝑿 ~𝐸 (𝝁, 𝛴, 𝑔 ). 𝐻 𝜸 𝛴 (𝑦 − 𝝁)  is a function of 𝑦, where 𝐻(𝑦) is a CDF of a ran-

dom variable that density is symmetric around zero with a PDF ℎ(𝑦), and 𝜸 = (𝛾 , … , 𝛾 ) is 𝑛 × 1 
vector of shape parameters of the distribution that is constant [21]. The family of GSE distributions is 
closed under affine transformations, which was proved by Shushi [34]; it means that any linear com-
bination of the skew-elliptical random variables also has a skew-elliptical distribution with the same 
characteristic generator. Consider 𝐴 is a 𝑚 × 𝑛 matrix of rank 𝑚 where 𝑚 ≤ 𝑛. If  
𝒀~𝐺𝑆𝐸 (𝝁, Σ, 𝜸, 𝑔 , 𝐻) then 

𝐴𝒀~𝐺𝑆𝐸 (𝐴𝝁, 𝐴𝛴𝐴 , 𝜸, 𝑔 , 𝐻) )5( 

where 𝜸 refers to an 𝑚 × 1 vector of shape parameters, and can be calculated from the characteristic 
function of 𝑋. This feature for the family of scale mixture of skew-normal distributions was proven by 
Vernic [35]. This basic property has many applications in theoretical and applied probability, espe-
cially in the choice of capital. Let 𝒘 be a 𝑛 × 1 weighted vector, so the returns of a portfolio under 
generalized skew-elliptical distribution is equal to 

𝑅 = 𝒘 𝒀~𝐺𝑆𝐸 (𝒘 𝝁, 𝒘 𝛴𝒘, 𝛾, 𝑔 , 𝐻) )6( 

3 The Risk Measures 
 

The tail conditional expectation  for an univariate generalized skew-elliptical distribution, as the risk 
measure, is introduced by Landsman and Makov [20] and is equal to: 

𝑇𝐶𝐸 (𝑌) = 𝔼 𝐿 𝐿 > 𝑉𝑎𝑅 (𝐿) = 𝜇 + 𝛬 , 𝜎 )7( 

where 

𝛬 , = 2
�̅�

1
2

𝑧 𝐻 𝛾𝑧 + 𝛾𝐾(𝑧 )

1 − 𝑞

𝑧 = 𝑉𝑎𝑅 (𝑧) =
𝑦 − 𝜇

𝜎
                       

𝐾 𝑧 = ℎ(𝛾𝑧)�̅�
1

2
𝑧 𝑑𝑧         

 )8( 

The TCE measure is based on the average of the tail of the distribution. This measure alone does not 
give enough information about the risks on the tail of the distribution. Therefore, we need the devia-
tion of the loss from the mean along the tail of the distribution. We use the explicit formula of the tail 
variance measure for the GSE distributions, which is introduced by Jamshidi and Khaloozadeh [15] 
and is equal to: 

𝑇𝑉 (𝑌) = 𝑉𝑎𝑟 𝐿 𝐿 > 𝑉𝑎𝑅 (𝐿) = 𝛬 , 𝜎  )9( 
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where 

𝛬 , =
2𝑧 �̅�( ) 1

2 𝑧 𝐻 𝛾𝑧

1 − 𝑞
+ 𝜎  𝑟 𝑧 +

2𝛾ℎ 𝛾𝑧 �̅�
1
2 𝑧

1 − 𝑞
+

2𝛾

1 − 𝑞
𝜅 𝑧 − 𝛬 ,  

𝐾(𝑧 ) = ℎ(𝛾𝑧)�̅�
1

2
𝑧 𝑑𝑧 

)10( 

 
Now, we use these two risk measures to form the TMV model and derive the extended efficient fron-
tier under the GSE distribution for optimal portfolio selection. 
 

4 The Tail Mean-Variance Optimization Problem 
 

We first introduce some of the notation used. Respectively, ℝ, ℝ  and ℝ  indicate the sets of real 
numbers, non-negative real numbers, and real positive numbers [30]. Consider 𝑛 risky assets (𝑛 ≥ 2) 
with mean return vector 𝜇 ∈ ℝ  and variance-covariance matrix 𝛴 ∈ ℝ × . Define 𝟎 and 𝟏, respec-
tively, as the column vectors of zeros and ones with dimension 𝑛. The investment weight vector is 
denoted by 𝒘 = (𝑤 , 𝑤 , … , 𝑤 ) ∈ ℝ , where 𝑤  is the fraction of wealth invested in asset 𝑖. 
 

4.1 The TMV Model under the GSE Distribution 
 

First, consider the classical MV model: 

𝑔(𝑤; 𝜏) = −𝜇 𝑤 +
1

2
𝜏𝑤 𝛴𝑤 )11( 

that is corresponding to (1). 𝑔(𝒘; 𝜏) shows a trade-off between expected return 𝝁 𝒘 and variance of 
return 𝒘 𝛴𝒘 of the portfolio through a risk-aversion parameter 𝜏 > 0. The tail mean-variance risk 
measure of the portfolio, introduced by Landsman [19], is defined as 

𝑇𝑀𝑉 (𝐿) = 𝑇𝐶𝐸 (𝐿) + 𝜆 𝑇𝑉 (𝐿) )12( 

and corresponds to the TMV criterion for portfolio selection. To obtain the TMV model under the 
GSE distributions, we can substitute (7) and (9) in the above equation. Therfore, it will be as follows 

𝑓(𝑤; 𝜆, 𝑞) = −𝜇 𝑤 + 𝛬 , 𝑤 𝛴𝑤 + 𝜆𝛬 , 𝑤 𝛴𝑤 )13( 

where 𝛬 ,  and 𝛬 ,   

𝛬 , = 2
�̅�

1
2 𝑧 𝐻 𝛾𝑧 + 𝛾𝐾 𝑧

1 − 𝛼
 

𝛬 , =
2𝑧 𝐻 𝛾𝑧 �̅�

1
2 𝑧

1 − 𝑞
+ 𝜎 𝑟 . 𝑧 +

2𝛾ℎ 𝛾𝑧 �̅�
1
2 𝑧

1 − 𝑞
+

2𝛾

1 − 𝑞
𝜅 𝑧 − 𝛬 ,  

)14( 
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and 𝜸 refer to an 𝑚 × 1 vector of shape parameters. The investor's risk preferences in the TMV model 
are represented by two parameters 𝜆 and 𝑞. 𝜆 ∈ ℝ  is a risk-aversion parameter and is similar to 𝜏 in 
the classical MV criterion. A low 𝜆 means that the manager is risk-averse, while a high 𝜆 corresponds 
to a risk-seeking manager who prioritizes returns over risk. 𝑞 ∈ (0,1) defines a certain threshold of 
loss in the portfolio. An investor is sensitive to losses that occur beyond the 𝑞-quantile because such 
losses are usually rare but large. By minimizing 𝑔(𝒘; 𝜏) with respect to (w.r.t) 𝒘 ∈ 𝒫 subject to a 
budget constraint 𝟏 𝒘 = 1, the optimal solution result will be equal to, (see, e.g., Ref. [32], p. 382) 

𝑤 = 𝑤 +
1

𝜏
𝑧 )15( 

where 𝒘 = Σ 𝟏/a , 𝒛 = Σ (𝝁 − 𝟏), 𝑎 = 𝟏 Σ 𝟏, 𝑏 = 𝟏 Σ 𝝁, 𝑐 = 𝝁 Σ 𝝁 . 

𝒘 ∈ 𝒫 is the Minimum Variance portfolio, i.e., the portfolio that minimizes 𝒘 𝛴𝒘 subject to 𝟏 𝒘 =

1. 𝑍 ∉ 𝒫 is a self-financing portfolio because it is clear that it satisfies the property 𝟏 𝒛 = 1. 
According to (2), we can see that the TMV model under skew-elliptical risks does not satisfy the 

positive homogeneity of a coherent risk; 𝑇𝑀𝑉(𝑘𝐿) ≠ 𝑘 𝑇𝑀𝑉(𝐿) for k > 0. Nonetheless, we show 
that the TMV model reverts to the MV model. First, we express two lemmas. 

 

Lemma 1. Assume 𝑞 ∈ (0,1), then 𝛬 , > 0 and 𝛬 , > 0. 

Proof. 𝛬 , > 0 is the combination of a positive number and multiplication of a cumulative distribu-

tion function by a decumulative distribution function in (8). 𝛬 , > 0 follows directly from (9).  

Lemma 2. The quartic polynomial 𝐹(𝑥) = (𝑥 − 𝑙) (𝑥 + 𝑚) − 𝑛𝑥  with 𝑙, 𝑚, 𝑛 > 0 has exactly one 
non-coincident real zero in (0, 𝑙) and exactly one non-coincident real zero in (𝑙, ∞). (for proof see, 
e.g., Ref. [21], Appendix A.1.) 
Now using a convex optimization method, we minimize the proposed TMV model to obtain optimal 
portfolio weights. 

Proposition 1. Consider 𝑟~𝐺𝑆𝐸(𝜇, Σ, 𝛾, 𝑔, 𝐻) is the vector of the rate of asset returns. Then under 
TMV criterion, the results are as follows when short sales are permitted. The minimum of 𝑓(𝒘; 𝜆, 𝑞) 
in (13) w.r.t 𝒘 ∈ 𝒫 subject to a budget constraint 𝟏 𝒘 = 1, exists and is unique and is equal to 

𝑤∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∈𝔭 𝑓(𝑤; 𝜆, 𝑞) = 𝑤 +
1

𝜏∗
𝑧 )16( 

𝜏∗ ∈ ℝ is the unique root of the quartic equation 

𝜏 − 2𝜆𝛬 ,

𝜏

𝑎
+ 𝑐 −

𝑏

𝑎
− 𝜏 𝛬 , = 0 )17( 

which is located in the range 2𝜆𝛬 , , ∞ .  

Proof. Define the Lagrangian ℒ 𝒘, 𝛾 = 𝑓(𝒘; 𝜆, α) − 𝛾 (𝟏 𝒘 − 1), where 𝛾 ∈ ℝ is a Lagrange 

multiplier. 𝜕ℒ 𝜕𝒘⁄ = 𝕆 and 𝜕ℒ 𝜕𝛾⁄ = 0 are written as follows 
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𝜇 −
𝛬 ,

√𝑤 𝛴𝑤
+ 2𝜆𝛬 , 𝛴𝑤 + 𝛾 1 = 𝕆

1 𝑤 = 1                                    

 )18( 

Suppose a solution for the above equation exists, and show it by (𝒘∗, 𝛾 ∗). Now if we consider the 

MV optimization problem with 𝑔(𝒘; 𝜏) defined in (11), the Lagrangian is defined as ℒ 𝒘, 𝛾 =

𝑔(𝒘; 𝜏) − 𝛾 (𝟏 𝒘 − 1) where 𝛾 ∈ ℝ is another Lagrange multiplier. The optimal solution (𝒘, 𝛾 ) is 

equal to the solution 

𝜇 − 𝜏𝛴𝑤 + 𝛾 1 = 𝕆

1 𝑤 = 1
 )19( 

The solution (𝒘∗, 𝛾 ∗) of (18) corresponds with the solution (𝒘, 𝛾 ) of (19) while that 𝜏 gives a spe-

cific value, we show by 𝜏∗ which is equal to 

𝜏∗ =
𝛬 ,

𝑤∗ 𝛴𝑤∗
+ 2𝜆𝛬 , =

𝛬 ,

√𝑤 𝛴𝑤
+ 2𝜆𝛬 ,  )20( 

The existence of 𝒘∗ depends on the existence of a solution for 𝜏∗ ∈ ℝ  in (20). Landsman [20] col-
lected some statistical properties about the returns of 𝒘, 𝒘 , 𝒛 and shown which the variance of return 
on the MV optimal portfolio is: 

𝑤 𝛴𝑤 = (1 𝛴 1) +
1

𝜏
𝜇 𝑧 

by substituting 𝒘 𝛴𝒘 into (20) and rearranging equation, we will have 

𝜏∗ − 2𝜆𝛬 , =
𝜏∗𝛬 ,

(𝟏 𝛴 𝟏) 𝜏∗ + 𝝁 𝒛
 )21( 

that also can be rewritten like (17). According to Lemma 1 and when 𝜏∗ ∈ ℝ , the right-hand side of 
(21) is positive and real therefore the left-hand side will be positive as well, Thus, 𝜏∗ > 2𝜆𝛬 , . Also, 

Lemma 2 proves the existence of a unique real root of (17) in the range (2𝜆𝛬 , , ∞). 

Corollary 1. 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑓(𝒘; 𝜆, 𝑞)
𝒘∈𝔭

= 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑔(𝑤𝒘, 𝜏∗)
𝒘∈𝔭

, where 𝜏∗ is given in Proposition 1. 

The optimization of the TMV criterion can be converted to the optimization of the classical MV crite-
rion with the parameter 𝜏∗ as the risk-aversion parameter, calculated according to Proposition 1. So, a 
risk manager can easily use the TMV model for leptokurtic asset returns and aversion to tail risk. 
 

4.2 The TMV Efficient Frontier 
 

Each investor selects a portfolio that best meets his needs, which these portfolios located on the effi-
cient frontier. So, investor's preferences play an important role in investment decisions. The efficient 
frontier is the set of optimal portfolios that present the greatest expected return for a given level of 
risk or the least risk for a defined level of return. The mean-variance efficient frontier ℰ is determined 
by 
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ℰ = {𝒘 }⋃ 𝒘 ∈ ℝ : 𝒘 = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑔(𝒘; 𝜏)
𝒘∈𝔭                      

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝜏 ∈ ℝ  )22( 

Proposition 2. The TMV efficient frontier in the (𝜎 ,𝒘, 𝜇 ,𝒘) coordinates system is equal to 

𝜇 ,𝒘 =
𝑏

𝑎
+

∆

𝑎

𝜎 ,𝒘

𝛬 ,
−

1

𝑎
+

𝛬 ,

𝛬 ,

𝜎 ,𝒘 )23( 

where 𝜇 ,𝒘 = −𝑇𝐶𝐸 (𝑋) = 𝝁 𝒘 − 𝛬 , √𝒘 𝛴𝒘 , 𝜎 ,𝒘 = 𝑇𝑉 (𝑋) = 𝛬 , 𝒘 𝛴𝒘. 

Proof. The TMV optimal portfolio in the model (13) is obtained by 

𝒘 = 𝒘 +
1

𝜏∗
𝒛 

where 𝒘 = Σ 𝟏/a , 𝒛 = Σ (𝝁 − 𝟏) and 𝜏∗ ∈ ℝ  is the unique root of the quartic equation (18). 

If we rewrite the expected portfolio return and variance of portfolio return using w, will have  

𝒘 𝛴𝒘 =
1

𝑎
+

1

(𝜏∗)

∆

𝑎
       ,       𝝁 𝒘 =

𝑏

𝑎
+

1

𝜏∗

∆

𝑎
   

where ∆= ac − b . Now we can obtain the TCM frontier in the (𝜎 ,𝒘, 𝜇 ,𝒘) coordinate systemas the 

following 

𝜇 ,𝒘 =
𝑏

𝑎
+

∆

𝑎

𝜎 ,𝒘

𝛬 ,
−

1

𝑎
+

𝛬 ,

𝛬 ,

𝜎 ,𝒘 

where 𝜇 , = 𝝁 𝒘 − 𝛬 , √𝒘 𝛴𝒘 , 𝜎 , = 𝛬 , 𝒘 𝛴𝒘.  

Corollary 2. When 𝑞 = 0 the TMV efficient frontier reduced to 

𝜇𝒘 =
𝑏

𝑎
+

∆

𝑎
𝜎𝒘 −

1

𝑎
 )24( 

the TMV efficient frontier in the (𝜎 , 𝜇 ) coordinate system is according to the MV efficient frontier. 
Since 𝛬 , = 0 and 𝛬 , = 1when 𝑞 = 0, the TMV frontier in (23) reduces to the MV frontier in (24). 
 

5 Application to Stock Data Returns  
 

Consider a portfolio of 10 various industries, including 50 companies for the period 2017 to 2019 that 
listed in the Tehran Stock Exchange. Selected companies are from industries including Chemical 
products, Basic metals, Petroleum products, Automobile and parts, Food products except sugar, Sug-
ar, Supply of electricity and gas, Pharmaceutical products, Cement and plaster, and Ceramic Tile. 
Stocks respectively show by 𝑺 = (𝑆 , 𝑆 , … , 𝑆 )  and stock daily returns denote by 𝑿 =

(𝑋 , 𝑋 , … , 𝑋 )  with 𝑛 = 50. The vector of means, standard deviation, skewness, and kurtosis of 
daily stock returns are given in Table 1. As we can see, the asset return rates do not follow normal 
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distributions and show the features of the leptokurtic and fat tail. For this purpose, we use the general-
ized skew-elliptical distributions for data analysis. We model the asset returns with a multivariate 
skew student-t-normal distribution with seven degrees of freedom (ν = 6), that skew function has a 
normal distribution. Therefore captures the fat-tailed feature of asset returns, as also discussed by 
Landsman and Valdez [22]. 

Table 1: Descriptive Statistics for Daily Stock Returns. 

Companies Mean Std Skewness Kurtosis Companies Mean Std Skewness Kurtosis 

Ind_1 

PJMZ1 0.0009 0.0217 -5.2658 66.218 

Ind_6 

GGAZ1 0.0033 0.0273 0.0258 2.4613 

PKLJ1 0.0015 0.0257 -9.724 179.62 GSBE1 0.0056 0.0352 1.3601 11.796 

PRDZ1 0.0022 0.0201 0.3483 4.9201 GESF1 0.0031 0.0291 0.3386 4.3577 

PTAP1 0.0015 0.0228 -1.6466 22.769 GHEG1 0.004 0.0293 -0.1188 2.5789 

IPTR1 0.0017 0.0223 0.1791 3.3022 SHKR1 0.0045 0.0296 0.062 2.7268 

Ind_2 

FOLD1 0.0027 0.0244 -6.0581 99.253 

Ind_7 

BFJR1 0.0014 0.0221 -0.4777 7.7877 

SHZG1 0.0021 0.0235 0.1409 3.1726 BMPN1 0.0031 0.0357 9.3702 165.85 

MSMI1 0.0024 0.0242 -0.6380 22.656 MOBN1 0.0017 0.0215 -1.7332 20.758 

FKHZ1 0.0022 0.0213 -1.5236 18.866 DMVD1 0.0033 0.0234 -0.6085 6.3547 

FKAS1 0.0025 0.0218 8.6188 133.61 VHOR1 0.0034 0.0272 0.1099 5.116 

Ind_3 

PNBA1 0.0016 0.0302 -7.4014 123 

Ind_8 

TMVD1 0.003 0.0261 -1.5126 14.617 

PNTB1 0.0038 0.0261 0.2171 3.4691 ABDI1 0.0024 0.0328 -10.032 186.69 

PTEH1 0.002 0.0319 -6.0289 83.319 EXIR1 0.004 0.0261 0.0393 3.6707 

PNES1 0.0017 0.0325 -8.8247 157.48 DALZ1 0.0012 0.0272 -5.2642 81.0698 

SEPP1 0.0023 0.0413 -12.3978 244.79 DSOB1 0.0012 0.0303 -2.3345 22.512 

Ind_4 

IKCX1 0.0024 0.026 -0.0128 2.6238 

Ind_9 

SHZG1 0.0021 0.0297 -3.4176 86.821 

SSAP1 0.0016 0.0269 -0.3106 4.1868 SEFH1 0.0026 0.0276 -0.9711 10.779 

PKOD1 0.0013 0.0252 0.1841 2.6362 SKAZ1 0.0025 0.0344 -2.6255 39.604 

BHMN1 0.0012 0.0316 -7.7768 131.83 SSEP1 0.0022 0.0295 -1.1234 14.776 

ZMYD1 0.0019 0.0269 0.0707 2.6914 SFNO1 0.0033 0.0275 -1.4005 13.667 

Ind_5 

GCOZ1 0.0014 0.0336 -7.5601 128.39 

Ind_10 

KPRS1 0.0023 0.0301 -0.5555 7.5495 

MINO1 0.0028 0.0237 0.4781 3.4123 KSAD1 0.0035 0.0269 0.0536 4.2847 

TSBE1 0.0021 0.0219 0.1333 5.6158 TKSM1 0.0035 0.0336 0.4414 4.2497 

SHAD1 0.0051 0.0562 13.169 243.69 ALVN1 0.0034 0.0311 0.0438 1.9382 

SLMN1 0.0063 0.0324 8.8032 132.42 SINA1 0.003 0.0274 0.1541 2.3707 
 

The proposed TMV optimal portfolio weights can be obtained quickly and easily using Proposition 
1, whose results are presented in Table 2. The risk-aversion parameter is 𝜆 = 5. For comparison, we 
also present in this table, other optimal portfolios when the vector of skewness parameters 𝛾 = 0, i.e., 
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a mean-variance portfolio and a minimum variance portfolio. We can see in Table 2 that the presence 
of 𝛾 = 0 in the optimization criterion, the range of weights changes. 

Table 2: Optimal Portfolio Weights by Minimizing (i) the Tail Mean-Variance Criterion (Min TMV), (ii) the 
Mean-Variance Criterion (Min MV), (iii) the Variance (Min Variance). 

 
Optimal Portfolio Wieghts 

Stocks S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Min TMV 
q=0.95 -0.0105 0.0120 0.0804 -0.0004 0.0243 0.0315 0.0108 0.0349 0.0227 0.0498 

Min MV -0.1338 -0.0319 0.1237 -0.0735 -0.0501 0.0520 -0.0116 0.0652 -0.0020 0.0512 

Min   
Variance 0.0412 0.0305 0.0623 0.0302 0.0554 0.0229 0.0202 0.0221 0.0330 0.0492 

Stocks S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 

Min TMV 
q=0.95 0.0255 0.0427 -0.0113 -0.0064 0.0125 0.0133 0.0174 -0.0049 -0.0175 -0.0207 

Min MV 0.0058 0.0942 -0.0357 -0.0065 -0.0068 0.0553 0.0000 -0.0676 -0.0643 -0.0620 

Min   
Variance 0.0337 0.0210 -0.0010 -0.0064 0.0205 -0.0043 0.0247 0.0213 0.0021 -0.0034 

Stocks S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 

Min TMV 
q=0.95 -0.0178 0.0129 0.0393 0.0105 0.0696 0.0398 0.0732 0.0220 0.0290 0.0503 

Min MV -0.0788 0.0113 0.0531 0.0198 0.1825 0.0716 0.1533 0.0551 0.0652 0.1193 

Min   
Variance 0.0078 0.0135 0.0335 0.0066 0.0222 0.0265 0.0396 0.0082 0.0138 0.0214 

Stocks S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 

Min TMV 
q=0.95 0.0340 0.0248 0.0293 0.0594 0.0368 0.0354 0.0220 0.0319 0.0139 -0.0231 

Min MV -0.0165 0.0398 -0.0216 0.1168 0.0534 0.0635 0.0244 0.1118 -0.0245 -0.0845 

Min   
Variance 0.0551 0.0185 0.0506 0.0354 0.0298 0.0236 0.0209 -0.0015 0.0300 0.0026 

Stocks S41 S42 S43 S44 S45 S46 S47 S48 S49 S50 

Min TMV 
q=0.95 0.0313 0.0112 -0.0066 -0.0246 0.0279 -0.0023 0.0287 0.0086 0.0068 0.0202 

Min MV 0.0156 0.0077 -0.0241 -0.0455 0.0698 -0.0101 0.0684 0.0217 0.0180 0.0619 

Min   
Variance 0.0379 0.0126 0.0007 -0.0158 0.0103 0.0010 0.0121 0.0032 0.0020 0.0027 
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 The purpose of the proposed proposition was to minimize the TMV criterion for the GSE distribu-
tions. To evaluate model, we consider two validations. For the first validation, we use the obtained 
weights from the MV model to calculate the TCE, TV, and TMV values as risk measures, and for the 
second, we consider that the value of each share is equal, and then calculate these criteria. The evalua-
tion results are presented in Table 3; it shows that the obtained weights of the TMV model are optimal 
because the calculated values of risks in this method have lower values than the other two methods. 

Table 3: Comparison of the TCE, TV and TMV Optimal Value and Validation Models 

Risk Validation TCE TV TMV 

Optimal Value  ( Min TMV q=0.95) 0.0173 0.0005 0.0200 

Validation.1 Value 0.0367 0.0024 0.0488 

Validation.2 Value 0.0209 0. 0007 0.0246 

 

In Fig. 1, the TMV optimal portfolio, obtained at the confidence level 𝑞 = 0.95, is shown in mean-
standard deviation space, and also the MV efficient frontier is displayed. The TMV optimal portfolio 
is located on the efficient frontier, which consists of the concave segment of the frontier. We compare 
the TMV optimal portfolio with the corresponding MV optimal portfolio by minimizing their criteria 
and by minimizing the criteria in (2) and (1), also set 𝜆 = 𝜏/2 for consistency between (2) and (1). As 
can be concluded, the TMV portfolio is more conservative than the MV portfolio because its return 
has a lower variance than that of the MV portfolio, and this is not surprising since avoiding large loss-
es is a major target in the TMV criterion. 

 
Fig. 1: Efficient Frontier and Optimal Portfolios Obtained by Minimizing (i) the Tail Mean-Variance Criterion 

(Min TMV), (ii) the Mean-Variance Criterion (Min MV), (iii) the Variance (Min Variance). 
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As 𝑞 → 0, the TMV portfolio tends to the MV portfolio because 𝛬 , → 0 and 𝛬 , → 1 and as 

𝑞 → 1, the TMV portfolio tends to the minimum variance portfolio. According to this matter, an in-
vestor can quantify the 𝑞-quantile of loss beyond that he is sensitive to losses. The higher this thresh-
old, his portfolio becomes more conservative because it is more sensitive to high losses. According to 
(14), the values of the parameters (𝛬 , , 𝛬 , ) are calculated as 

(1.15,2.37), (0.46,1.46), (0.29,1.17), (0.06,1.08) when 𝑞 = 0.95, 0.7, 0.5, 0.1. The TCE and TV risk 
can be obtained in terms of these values and the covariance matrix estimation. From the empirical 
results of (𝛬 , , 𝛬 , ), we can observe that the TCE risk is more sensitive to the choice of the confi-

dence level of 𝑞, compared with the TV risk of the portfolio.  

 
Fig. 2: TCE-TV Frontier. 

In Fig. 2, the TCE-TV efficient frontier, calculated at the confidence levels 𝑞 = 0.95, 0.7, 0.5, 0.1,  is 
displayed. As explained, the TCE and TV risk are sensitive to changes in 𝑞, so the efficient frontier 
also changes with changes in the different confidence levels. In particular, when 𝑞 = 0, the TMV 
portfolio frontier reduced to the MV frontier. 

6 Conclusion 
 

In the insurance and financial markets, events of extreme losses happen in the tail of loss distribu-
tions, and investors are sensitive to these losses. In this paper, we presented the tail mean-variance 
model using two risk measures, i.e., the TCE and TV under the generalized skew-elliptical distribu-
tion. The family of elliptical dependent structures is appropriate for modeling non-symmetric phe-
nomena. The TMV criterion can help an investor to understand the behavior of risk along the tail of 
loss distribution (𝑋 ≥ 𝑉𝑎𝑅 (𝑋)) by considering different confidence levels. We also used the TMV 

model for optimal portfolio selection and obtained an explicit solution by providing a simple compu-
tational method, away from the inversion, partition, and concatenation of large matrices. Also, the 

0 0.5 1 1.5 2 2.5 3

x 10
-3

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
TCE-TV Efficient Frontier

T
C

E

TV

 

 

q = 0.95

q = 0.7

q = 0.5

q = 0.1



Jamshidi Eini and Khaloozadeh 
 

 

 
 
Vol. 6, Issue 1, (2021) 

 
Advances in Mathematical Finance and Applications  

 
[197] 

 

extended efficient frontier formula derived from this criterion is presented. The TMV criterion allows 
investors to choose portfolios that take into account the extreme risk with large losses, and this criteri-
on is proper for leptokurtic and fat-tailed asset returns. By using the TMV criterion and extended effi-
cient frontier, an investor can control his aversion to tail risk and determine the 𝑞-quantile of loss be-
yond that he is sensitive to losses. As the threshold of loss gets high, an investor becomes more sensi-
tive to extreme losses, and his optimal portfolio becomes more conservative. This problem is an es-
sential issue in investing. For further research, we want to investigate the direct effect of the skewness 
parameter on the optimal weights and efficient frontier. 
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