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Abstract 

one of the most important financial and investment issues is Portfolio selection, 
that seeks to allocate a predetermined capital (wealth) over one or multiple 
periods between assets and stocks in such a way that the wealth of investor 
(portfolio owner) is maximized and, Simultaneously, its risk minimized. In the 
paper, we first propose a mathematical programming model for Portfolio 
selection to maximize the minimum amount of Sharpe ratios of the portfolio in 
all periods (max-min problem). Then, due to the uncertain property of the input 
parameters of such a problem, a robust possibilistic programming model (based 
on necessity theory) has been developed, which is capable of adjusting the 
robust degree of output decisions to the uncertainty of the parameters. The 
proposed model was tested on 27 companies active in the Tehran stock market. 
In the end, the results of the model demonstrated the good performance of the 
robust possibilistic programming model.   
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Introduction 

Portfolio formation and diversification of assets are among the most 

fundamental strategies for reducing and controlling investment risks. A good 

Portfolio selection with high returns and low risk is demanded by all investors. 

Hence, there are many models for Portfolio selection and many efforts have 

been made to improve these models. In fact, Portfolio selection of assets is one 

of the most important issues in the field of investment management.  

Several optimization methods have been developed following 

Markowitz's innovation and his minimum risk model. These methods have 

tried to generate the highest quality portfolios in terms of risk and return, by 

adding more metrics in the target function and intelligent constraints. In recent 

years, in addition to optimization of risk and return of the portfolio, the 

discussion of the sustainability of results and the need for a gradual change in 

the weight of assets in the investment portfolio has been raised, given the 

existence of an uncertainty factor in the level of risk and return of financial 

assets. Also, using stochastic, fuzzy logic and robustification approaches, 

attempts have been made to optimize the level of uncertainty in addition to 

achieving the optimal combination of risk and return. Therefore, simultaneous 

risk and return play a vital role in the investment portfolio, so in designing each 

model for optimization, it is necessary to consider return and risk maximization 

in the target function simultaneously. This can be done in the form of a Multi-

objectives function or by targeting a measurement in a function that is a 

combination of risks and returns and to target the measurement 

maximization/minimization. One approach is using Sharpe; that is, a 

measurement having risk and return at the same time. Therefore, the Sharpe 

statistics/ratio was selected. 

     

  
                                                                                                                                

  : Portfolio return 

  : Risk-free rate of return 

  : Portfolio Standard deviation (risk measurement) 

In addition to being considered as an appropriate ratio for assessing the 

relative performance of financial assets, the Sharpe ratio (Sharpe,1963) 

maximization in the optimization portfolio model is equivalent to minimizing 

the risk of falling investment returns below a certain limit (Roy's Safety-First) 

in the most conservative mode; that is, when the form of the distribution 
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function is not known and it is necessary to use Chebyshev inequality, even the 

worst types of distributions (distributions with negative skewness, etc.) also 

apply to the model, and has injected robustification to the model in practice. 

In another aspect, due to the competitive and risky space in the stock 

market, decision-making is often faced with a lack of information or uncertain 

information; therefore, the model programming should take this into account. 

Robust optimization is presented in recent years to deal with uncertainty, in 

which the optimization is addressed when the worst happens. The Robust 

approach was proposed to solve optimization problems with data uncertainty 

and has recently been widely explored and developed. The main advantages of 

this approach are as follows (Alem, Morabito, 2012): 

1. Robust optimization is easier than the probabilistic approach in terms of 

solving the model. 

2. There is no need for a clear knowledge of the possibilistic distribution of 

data with uncertainty. 

In the subject matter discussed in this paper, due to the incompleteness 

and unavailability of information, we face uncertainty in data that is of a kind 

of epistemic uncertainty (Asadujjaman, 2019), therefore, robust possibilistic 

programming has been used to model the problem. It is superior to possibilistic 

programming for the following reasons: 

1. In robust optimization, the confidence level of constraint satisfaction is 

determined by the model itself and its value is optimal, 

2. In robust optimization, the final answer has Optimality Robustness and 

Feasibility Robustness 

3. Considering the objective function deviations due to the uncertainty of the 

parameters, it avoids heavy and irreparable costs for managers and 

investors. In the case of possibilistic programming, the following issues are 

not taken into consideration. 

 Background and Literature review 

So far, many researches have been done in the optimization of stock portfolios 

due to the increasing development of global financial markets and the impact 

of this optimization on economic returns and profits.  

In 2009, Huang used the combination of Fuzzy c-means (FCM), a 

variable-precision rough set (VPRS) model, Autoregressive with exogenous 

input (ARX) and a gray-system theory for Portfolio selection investing. 
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Soleimani et al. (2009) presented a genetic algorithm-based approach 

with integer constraints and the market share of various industries to optimize 

Markowitz's MV model. 

Chang et al. (2009) introduced a genetic algorithm to solve optimization 

problems with different risk measurements on the model. 

Tiriaki et al. (2009) combined the fuzzy AHP with Portfolio selection. 

The main approach in AHP was to design and implement a model for 

combining corporate risk behavior with the investor risk class (low, medium 

and high), investor goals and internal and external factors. 

Montazar et al. (2010) proposed a method for designing a fuzzy expert 

system for recommending and introducing investment portfolios in the Tehran 

Stock Exchange. 

Zymler et al. (2011) combine a robust optimization portfolio with a 

classic insurance portfolio model to cover risks from rare events. 

Sajjadi and Seyyed Hosseini (2011) proposed a multi-period dynamic 

fuzzy model for Portfolio Selection of stocks, in which borrowing and lending 

are possible in real terms (different rates of cash borrowing and lending). 

Jun and Lu (2012) used a Mini-Max -based robust ranking model in 

integer programming. 

The constraints in this model are generated using a network streaming 

model and ultimately used this method for portfolio optimization. 

Looking deeper into robust investment portfolios, Fabozzi et al. (2014) 

analyzed the behavior of these portfolios formed with Robust Optimization. 

Their research suggested that by increasing robust optimization of investment, 

optimal weights would be directed towards that portfolio, whose variance is 

described to the highest by specific factors. 

Wu Chang Kim et al. (2014) introduced a new approach to the robustation 

portfolio of the minimum variance in which to control the kurtosis and 

skewness (third and fourth torque) without the aid of higher torques. The main 

idea in this article is that the robust investment portfolio based on the worst-

case scenario is prone to skewness and opposed to kurtosis. 

Pishvaee, Razmi, and Torabi (2012) used robust possibilistic 

programming to design supply chain. 

Pishvaee and Kalantari (2012) also used robust possibilistic programming 

for the primary programming of the drug supply chain. 
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Millt and Takkapi (2015) presented robust models to meet the needs of 

investors looking for a global minimum variance portfolio and a rule against 

robust uncertainty. 

In this paper, the Monte Carlo simulation showed the robust portfolio 

superiority to unrobust portfolios in different dimensions of the risk and 

variance-based adjusted return. They found that the robust investment portfolio 

had a minimum of variance, lower turnover, and a Sharpe ratio compared to 

traditional portfolios. 

Zulfagar and Ayoub (2015), based on a study conducted on the Karachi 

stock exchange in the area of using the robust downside index, showed that the 

use of this statistic, especially concerning assets whose curtailment curves are 

greater than those of kurtosis, are much better performing Compared to 

Markowitz's Mean-Variance Model. 

Balabas and Balabas (2016) put forward the concept of ambiguity with 

risk in their paper to create a robust portfolio optimization model, and in 

particular to solve the shortcomings of capital asset pricing models. 

Han, Zia and Lee (2016) developed the robust asymmetric model of the 

absolute mean standard deviation that covers asymmetry in the returns 

distribution. 

They tested various strategies for robustification in emerging markets and 

falling markets and showed that the model was able to identify lucrative stocks. 

In the recent period, and since 2009, Some important points of foreign 

research include: 

A. Among the researches, the use of the Sharpe index as a performance 

measurement was very high and had a significant difference with other 

methods. The most significant measurements are CVAR, Torque, kurtosis, 

Alpha and Treynor ratio. 

B. Mathematical modeling, Fuzzy logic, and genetic algorithm are the most 

widely used algorithms to optimize portfolios of assets. Other algorithms 

include particle swarm optimization approach, quadrilateral programming 

model, expert system methodology and goal programming. 

Research gap  

The literature review identifies important research gaps. Despite the decades of 

research on investment optimization and risk management, there is still no 

acceptable tool for risk measurement (The fundamental nature of risk in the 
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financial field has made it impossible to achieve such a model since any model 

of a universal nature will change the behavior of investors in financial markets 

and ultimately reduce the performance of the model.) 

The development of new Investment Portfolio Selection approaches and 

models with more comprehensiveness that deals with different and conflicting 

and are more flexible in dealing with the risk phenomenon (goals (with no 

definitive means to measure it)) is a perpetual gap. 

The research also aims to develop a new model with Robust Optimization 

and Fuzzy Logic as the goal of Investment Portfolio Selection. 

The question now is what model to choose for portfolio design (in terms 

of type, volume, and quantity of financial assets used in the portfolio) should 

be used in this model, which can maintain its credibility and efficiency over an 

acceptable time frame, despite the ongoing Volatilities of financial markets. 

None of the research on stock portfolio programming in uncertainty has 

used the robust possibilistic programming approach to deal with this 

issue.  Using this approach will make the model responses determined so that 

feasibility robustness and optimality robustness are also guaranteed and, 

therefore, reduce the cost of implementing a real-world decision. Therefore, 

sources of uncertainty in the stock market should be effectively managed. and, 

in order to manage the uncertainty surrounding this environment and to have 

sufficient confidence in the results, robust programming must be done so that 

managers can be sure of their results and reduce the risk of their decision 

making. Programming robust is one of the new and reliable approaches.  

Research methodology 

Dantzig et al. (1993) proposed a standard framework for multi-period asset 

allocation problems. They assume risky assets in the capital market; trading 

periods, linear transaction costs for trading stock and one riskless asset e.g. 

risk-free deposit, we use this framework for portfolio making and objective 

function based on Sharpe ratio. 

1. Non-deterministic model of stock portfolio optimization 

In the real world, especially in capital markets, many of the parameters of the 

problem are subject to change over time and the definitive assumption of these 

parameters during programming cause errors and problems. In the underlying 

question, it is assumed that the stock return parameter and, hence, Sharpe ratios 

are not definite numbers and are predictable fuzzy numbers. Given the dynamic 
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nature and Volatility of some of the important parameters (Sharpe ratio and 

stock return), for modeling imprecise parameters that can be defined by their 

four prominent points (Pishvaee et al. 2012): 

 ̃   (      ،      ،      ،      )                                                                                         

 ̃   (      ،      ،      ،      )                                                                                      

 ̃   Represent fuzzy Sharpe ratio in period t and  ̃   represent the fuzzy 

rate of return in period t  

a.The robust possibilistic programming model 

The evaluation of definitive parameters for long-term decision-making is 

difficult and sometimes impossible. Even if one could estimate a possibilistic 

distribution function for these two parameters, these parameters may not have 

the same behavior as the past data. Different approaches, including possibilistic 

programming, have been used to address the uncertainty. It should be noted 

that the uncertainty parameters are suitably suited for the possibilistic 

functions, such as triangular or trapezoidal possibilistic functions, based on 

inadequate data or knowledge and experience of modeling decision-makers.  

Therefore, in this paper, uncertain parameters are considered as fuzzy data at 

any time when it changes in a long-term programming horizon. If the 

possibilistic programming method is used, in order to control the level of 

confidence in creating these uncertain limits, the concept of the decision can 

achieve the minimum level of assurance as a safe margin for any of these 

constraints. To do this, two fuzzy standard method and practices are commonly 

used. It is worth noting that the optimistic fuzzy (NEC) indicates the optimistic 

probability level of an uncertain event involving uncertain parameters, while 

the pessimistic fuzzy (POS) indicates a pessimistic decision about an uncertain 

event. It is more conservative, however, to use a pessimistic fuzzy, that is, we 

assume that the decision has a pessimistic (conservative) constraint to create 

uncertainties; Currently, based on the ambiguous parameters mentioned and the 

use of the expected value for the objective function and the pessimistic action 

for uncertain constraints, the obvious equivalent of the uncertain model can be 

formulated. To do this, first consider the abbreviation for the proposed model 

(Tanaka, 2000): 

4)(           

       

(5)        
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(6)        

(7)       

(8)   { ، }،  ،     

It is assumed that vectors 𝑑 and 𝑏 are presented in the non-deterministic 

parameters in the above model. The matrices B, E, S are coefficient matrices of 

the constraints. Additionally, vectors y and x denote the binary and continuous 

variables, respectively regarding the generic non-deterministic finite program, 

the expected value of the pseudo-objective and fuzzy function is obtained, 

respectively, for dealing with the objective function and the uncertain limit. 

Now with the abbreviation, the basic possibilistic programming model is as 

follows: 

(9)            

       

(10)    { ̃    }    

(11)    {    ̃  }    

(12)       

(13)     ،  ،  ،     

In which β and α control the minimum degree of certainty for establishing 
a non-deterministic constraint with a pessimistic decision-making approach. 

Regarding the distribution of the trapezium probability for ambiguous 

parameters, the general form of relations 9-13 can be defined as follows 

(Tanaka, 2000): 

(14)            

       

(15) (           )     

(16)    ((
 

 
)      (  

 

 
)     )    
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(17)    ((  
 

 
)  𝑏   (

 

 
)  𝑏  )    

(18)       

(19)     ،  ،  ،     

In the possibilistic programming models, the minimum level of 

confidence to establish a non-deterministic constraint should be determined in 

terms of decision preferences. As seen, in the proposed model, the objective 

function is not sensitive to the deviation from its expected value, which means 

that gaining robust solutions in the possibilistic programming model is not 

guaranteed. In such cases, there may be high risk in many real cases of 

decision-making, especially in strategic decisions that the robustness of the 

solution is vital. In fact, possibilistic programming has important shortcomings. 

In probabilistic programming, the constraint satisfaction level is a parameter 

determined by the decision-maker, which does not optimize the confidence 

level. In the possibilistic programming model, there is little interest in the 

feasibility of robustness and optimality robustness. On the other hand, the lack 

of attention to the deviations of the objective function due to the uncertainty of 

the parameters can lead to irreversible costs for managers and organizations. 

This is not much to be considered in possibilistic programming. Therefore, 

Pishvaee et al. (2012) proposed a robust optimizing program called robust 

possibilistic programming using the concept of robust optimization. This 

approach takes advantage of both robust optimization and possibilistic 

programming, which clearly distinguishes it from other programming 

uncertainty approaches. The robust possibilistic programming form in the 

previous model is as follows: 

(20)      
               

                 

  (   (  
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(23)    ((  
 

 
)      (

 

 
)     )    

(24)       

(25)     ،  ،  ،     

(26)      ،    

In the first objective function, equation 20 of the first expression refers to 
the expected value of the first objective function, using the mean values of the 
non-deterministic parameters of the model. The second, third, and fourth 
sentences indicate the total cost of the deviation from the non-deterministic 
parameter  Hence, the parameter ξ is the weight function of the objective 
function, η1, and η2, the penalty for not estimating the uncertainty 
parameter The parameters β and α represent the correction factor at the fuzzy 
numbers, according to Pishvaee (2012) which should be between 0.5 and 1. 

Research Findings  

In this section, a dynamic model is designed to invest in a limited number of 

financial assets (Tehran Stock Exchange and risk-free deposits) over a period 

and with a specified cash budget and at the end of each period on the basis for 

risk and return data, investments reviewed, some sold, and some new assets 

purchased. One of the best benchmark and measurement for the selection of a 

mass of stocks and financial assets is the Sharpe ratio of each share/asset. In 

order to achieve the real diversification, the weight assigned to each share in 

the portfolio of investment placed in a certain range (Floor and ceiling) 

(Fabozzi,2007), and by determining the floor and ceiling for it, we tried to 

design and present a conservative portfolio consistent with the facts of real 

capital markets. 

1. Definitive modeling 

Parameters 

Sharpe ratio of i
th
 share in the period t      

Return of i
th
 share in the period t      

Cash profit (risk-free deposit) in the period t         

The maximum weight of the share  th
 in the portfolio in the period t     

The minimum weight of the share  th
 in the portfolio in the period t     

Number of authorized shares in the portfolio   

Purchase fee (about 0.5% of transaction value)  𝑏 

Sales fee (about 0.6% of transaction value)    
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Decision variable 

Continuous variable   

Weight of i
th
 share in the period t     

Cash amount in the period t         

The standard deviation of the portfolio in period t    

Weight of i
th
 share in the period t (The result of the 

   

∑    
   
   

)     

Sale amount of i
th
 share in the period t     

The purchase amount of i
th
 share in the period t     

Binary variable, (if       = 1,then      >0 and F_it   = 0,then    =0)     

 

(27) 
       

 

∑              
 
   

√∑ ∑               
 
   

 
   

 

  

       
(28) 

       
   

∑    
   
   

       ،          ، ، ، ،    ، ،  ،  

(29)                               ،          ، ،  ، ،    ، ، ،  

(30) 
        (             )            ∑         

 

   

 ∑    𝑏    

 

   

، 

   ، ، ،  

(31) 
   ∑   

 

   

   ،               ، ، ،  

(32)        =1000 

(33)    ،   ،     ،          ، ،  ، ،    ، ، ،    

(34)       ،                  ، ،  ، ،    ، ،  ،    

Relation 27 represents the objective function of the model. Constraint 28 

specifies that the weight of each share must not exceed the minimum and 

maximum values set. Constraint 29 defines the weight of each share in each 

period, based on the share weight in the previous period and the amount of the 

transaction. 
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Constraint 30 specifies the amount of cash. Constraint 31 specifies upper 

and lower bound of the number of shares to be selected per period, Constraints 

33 and 34 also specify the range of decision variables. 

This model is nonlinear due to its objective function type and is not easily 

solvable by software packages. Therefore, with the help of changing the 

variable and some mathematical actions, this optimization model is applied to 

the change of target function and final shaping. 

 

 

(35)      

       

(36) 
∑              

 
   

√∑ ∑               
 
   

 
   

 
     ،          ، ،  ،  

(37)        
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(38)                               ،          ، ،  ، ،    ، ،  ،  
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(39) 
        (             )            ∑         

 

   

 ∑    𝑏    
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   ، ،  ،  

(40)    ∑   

 

   

   ،               ، ،  ،  

(41)        =1000 

(42)    ،   ،     ،          ، ،  ، ،    ، ،  ،    

(43)       ،                  ، ،  ، ،    ، ،  ،    

2. The proposed robust possibilistic programming model for stock 

portfolio optimization 

The purpose of this section is to allow the constraint 28 to be exceeded by a 

certain level. Given that a pessimistic fuzzy is used to ensure greater reliability, 

and then relation 28 is converted as follows: 

(44)     ∑∑ ̃     

 

   

 

   

       

According to the above, the robust possibilistic programming model is as 

follows: 

(45) 

MAX( y  (
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(48) 
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 (52)        =1000 

53)(    ،   ،     ،          ، ،  ، ،    ، ،  ،    

(54)       ،                  ، ،  ، ،    ، ،  ،    

(55)      ،    

Relation 42 shows the objective function of robust possibilistic based on the 

proposed model. Constraints 43, 45 and 46 are also rewritten according to 

robust possibilistic programming rules. Other constraints are the same as the 

proposed definitive model. 

3. Computational results 

In this section, at first, 29 companies active on the Iran stock market were 

selected in 6 time periods (weekly) for problem-solving. Descriptive statistics 

that extracted from these samples (stocks) are variance and covariance. The 

model was solved using GAMS software and BONMIN Solver and with the 

help of the 3 GB RAM, the Core 2 Duo CPU system and the outputs of the 

problem are also shown. The sensitivity analysis was performed on some of the 

parameters of the model and the objective function and decision variables were 

compared. This sensitivity analysis has two main objectives: a) Creating 

managerial insights and new scientific achievements; b) Ensuring the validity 

of the model (Sensitivity analysis on some parameters does not really mean 

much and does not lead to new knowledge. But this analysis and observing the 

change in the value of the objective function help us to make sure that his 

model is valid and not technically problematic). 
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Problem-Solving in a Real Sample of Companies in Stock market 

Considering the uncertainty assumption of some of the model parameters such 

as the Sharpe ratio of stock and stock returns at different periods, the 

mentioned parameters are considered as a trapezoidal fuzzy. Other parameters 

of the model are based on the information available from the stock market. 

Table 1 shows the definite parameters used to solve the model (30 companies 

active in the stock exchange).  

Table1. The definitive parameters used in problem-solving 

Parameter Value Parameter Value 

Number of authorized shares per 

Portfolio 
5 Purchase fee 0.005 

The maximum weight of the share 0.5 Sales fee 0.006 

The minimum weight of the share 0.1 Initial investment 1000 

According to table 1, the maximum objective function in the above problem is 

1520.056.  

4. Sensitivity analysis 

� Number of authorized shares per portfolio  

Initially, the sensitivity of the problem is analyzed on the difference between 

the minimum and the maximum number of authorized stocks in each portfolio. 

Thus, the objective function and the computational time are shown in Table 3. 

Table2. Changes in the amount of objective function and computational time by changing the 

difference between the upper and the lower number of authorized stocks 

Number of 

difference 

between upper 

and lower 

The value of 

the objective 

function 

 

Computational time 

The number of 

companies that 

have been 

purchased at least 

once during six 

periods 

3 2.23 5.003 15 

4 2.54 5.191 19 

5 2.833 7.215 22 

6 3.024 7.961 23 

7 3.198 7.053 23 
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For simplicity, Figures 1 and 2 show the change in the objective function 

and the number of companies involved in stock purchases, with changes in the 

number of authorized shares per portfolio. 

Figure 1. Change the objective function value by changing the difference between the upper 

and the lower number of authorized stocks 

 

 

Figure 2. Chart of total companies by changing the difference between the upper and the lower 

number of authorized stocks 
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� The risk-free rate of return 

In the remainder of this section, with the assumption of constant consideration 

of 5 shares in each portfolio of purchases in each period, the objective function 

and the computational time of the problem solving are calculated by changing 

the risk-free rate of return. Table 3 shows the changes in these indicators in 

different amounts of the risk-free rate of return. 

Table 3. Change the value of the objective function and computational time by changing the 

risk- free rate of return 

Return of 

risk-free 

deposit 
 

The value of the 

objective function 
 

Computational time 

Amount of change in 

The value of the 

objective function (%) 

0.11 2.527 6.915 -0.00237 

0.12 2.530 7.677 -0.00119 

0.13 2.533 7.215 0.00000 

0.14 2.537 7.024 0.00158 

0.15 2.540 7.168 0.00276 

0.16 2.543 10.292 0.00393 

According to the results of the above table, with the increase of the risk-

free rate of return, the objective function is increased and with the increase of 

1% of the risk-free rate of return, the total objective function is linearly 

increased. For this purpose, Figure 3 illustrates this change in risk-free returns. 

Figure 3. Change in the percentage of total profit by changing the risk-free rate of return 
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� Uncertainty rates 

Due to the nature of possibilistic Robust optimization model, the uncertainty 

rate is implemented as a decision variable in modeling, which is included in the 

objective function and computational time calculated in β and α between 0.5 
and 1. This section is shown in Table 4 by changing the uncertainty rate. 

Table 4. Change the value of the objective function and computational time by changing the 

uncertainty rate 

    
The value of the objective 

function Computational time 

0.9 

 

0.5 0.850 6.173 

0.6 0.852 5.374 

0.7 0.854 5.844 

0.8 0.856 5.125 

0.9 0.858 5.721 

1 0.860 6.337 

0.95 

 

0.5 1.553 3.985 

0.6 1.552 4.146 

0.7 1.550 4.879 

0.8 1.549 4.457 

0.9 1.548 4.15 

1 1.547 4.436 

1 

 

0.5 2.533 7.215 

0.6 2.528 8.552 

0.7 2.523 6.113 

0.8 2.518 6.555 

0.9 2.513 6.148 

1 2.508 7.421 

According to the results of Table 4, the maximum profit earned in the 

uncertainty rate α and β is 1 and 0.5, respectively. Figure 4 shows the trend of 
variations in the objective function value at different rates of uncertainty. 
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Figure 4. Change the value of the objective function with changes in uncertainty rate 

Conclusion and suggestions 

In today's competitive atmosphere, it's important and essential to design a 

robust model for stock portfolio selection. Over the past decades, sudden 

Volatilities and the issue of coping with their adverse effects on the stock 

market have become a major challenge for financial managers of organizations 

or investors. Due to the uncertain nature of input parameters in the stock 

market, in this paper, we developed a new robust possibilistic programming 

model based on the Sharpe ratio to deal with the uncertainty of the parameters 

and the low quality of the decisions made by this factor. In the following, a real 

problem based on the fuzzy data of 27 companies active in the stock market 

was presented to show the performance of the proposed model, as well as the 

high-performance and functionality of the robust possibilistic programming 

model. Finally, it's worth noting that according to the outputs of the model, 

determining the exact amount of fines (penalty) in the possibilistic 

programming model is very important because fines are the main factor in the 

performance of the model and the determination of the confidence levels of 

non-deterministic parameters. 

Other robust optimization approaches can also be used in future research. 

One can also use the opinions of various experts to increase the credibility of 

describing the sensitive parameters.  
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In the end, it is suggested to use risk-based minimization models, in 

particular, using more precise and comprehensive risk assessment measures 

such as the Estimator of Garman- Klass (Garman,1980) and Parkinson's 

(Parkinson,1980), to take full advantage of Robust possibilistic programming 

capabilities. Additionally, adding an integer constraint to the weight of each 

asset/share in the investment portfolio helps the proposed portfolio of the 

model in the real world to be easily implemented and prevent the purchase of a 

very small shareholding (micro trade). 
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