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Abstract. The rapid development of communication technologies 

and information and online computers and their usage in processes 

of the industrial production have facilitated simultaneous 

monitoring of multiple variables (characteristics) in a process. In 

this work, we applied boosted decision tree (�������) and Monte 
Carlo simulation to propose an efficient method for detecting in-

control and out-of-control states in multivariate control 

processes.In this work, four classifiers (methods) - 	
�,  χ���� , ����, ��– are used for detecting the process control states. Then, with 
converting detection results these four classifiers, the boosted 

decision tree is made and provides the ultimate result as the in-

control or the out-of-control states. To show how the proposed 

model works and the superiority of this method over 	
�, 	
���� , ����, and��methods, we run it on a standardized trivariate normal 
process. To compare and evaluate the performance of classifiers, we 

used ARL functions and the evaluation measures including 
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Accuracy (ACC), Sensitivity (TPR), Specificity (SPC), and 

Precision (PPV). The findings not only showed the superiority of 

the proposed method over the tradition Chi-square but also 

confirmed former results on the efficiency of decision tree for rapid 

detecting of mean shifts in multivariate processes in which data are 

gathered automatically. 

Keywords: Multivariate Quality Control, Mean Shift Detection, 
Boosted Decision Tree learning, Moving Window. 

1. Introduction 

In real-world situations, we typically deal with morethan one variable 

simultaneously. For example, we may want to simultaneously monitor 

and control both the length and the inside diameter of a pipe, which 

both must be acceptable for the pipe. However, monitoring and 

controlling both characteristics separately may not yield an output in 

which both variables are acceptable (Mitra, 2016). Therefore, 

multivariate methods are needed when monitoring and controlling 

several quality characteristics(variables) and take advantage of any 

relationships among them (Woodall & Montgomery, 2014) Such 

Statistical Process Control (SPC) problems are often referred to as 

multivariate SPC (MSPC) problems, which are the main emphasize of 

the present work. Multivariate control charts are useful tools for 

monitoring and controlling the quality of a multivariate process or 

product. These charts are divided into various types based on their 

characteristics and results. For example, multivariate means control 

charts provide key information about process variations through 

determining the mean shift among a number of qualitative 

characteristics. One idea of natural is to apply a joint monitoring scheme 

that includes a set of univariate SPC charts, where each control chart is 

applied for monitoring a single quality characteristic and the joint 

monitoring scheme gives a signal of process distributional shift when one 

individual control chart gives a signal at least. In practice, some people 

prefer this idea because it only has single-variable SPC charts involved 

(Qiu, 2013). Montgomery and Mastrangelo (1991) showed that using 

multiple Shewhart univariate control charts in a multivariate quality 

process will produce misleading results in the simultaneous monitoring of 
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variables. It becomes even worse by an increase in the number of 

variables.As an alternative, T� control chart (Hotteling, 1947), 
Multivariate Cumulative Sum Control Chart (Crosier, 1988; Pignatiello 

& Runger, 1990; Woodall & Ncube, 1985), and Multivariate Exponential 

Weighted Moving Average Chart (Lowry, Woodall, Champ, & Rigdon, 

1992), are among the most common methods for monitoring the mean 

vector in multivariate processes. The most known procedure is the 

control chart of HotelingT 2 for monitoring the process mean vector, 

which is a direct analog of the univariate Shewhart x chart” 

(Montgomery, 2013). Hoteling’sT�statistic _ a generalized form of 
Student’s t statistic _ is a multiple of statistical distance or Mahalanobis 

(or quadratic distance). The basic assumption that precedes any 

discussion on distribution characteristics of Hoteling’sT�statistic is that 
multivariate observations of a random sample follow a normal 

multivariate population with amean of μ and a covariance matrix ofΣ. 
Based on this assumption and depending on the environmental situation, T�can take three different density functions; i.e.,β, F, and χ�. β 
distribution can be used in phase I, F distribution can be used in phase 
II, and χ� distribution can be used in both phases. For more information 
about phase I and phase II, see Alt (1985) and Woodall (2000). Assume 

that a process or a product has p interdependent quality characteristics 
'

1 2
( , ,..., )

p
X x x x=  that must be controlled simultaneously. When the 

process is in-control, X has a normal distribution with the mean vector � and covariance�, and is denoted as follows:  
�~��(�, �) 

where μ = (μ , μ�, … , μ")# and 
Σ = (σ  , σ �, … , σ%"; σ� , σ��, … , σ�"; … ; σ" , σ"�, … , σ"")# 

 Multivariate normal distribution and its major characteristics are 

discussed in detail in Tong(2012)and Miller, Vandome, and John (2010).  

Since the assumption in this work is that the mean vector is analyzed in 

phase II of statistical control, μ and Σ have already been determined in 
phase I and thus are known. Therefore, to detect the mean shift and 

monitor the process to see if it is in-control, we use the following 

statistic:  
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�� = '(�( −  +)# Σ, (�( −  +) ∼  	�� 
where X/ = (x(  , x( , … , x(" )# is the mean of p quality characteristics in 
samples of size n andχ� depends only on p, the number of quality 
characteristics. With the α-level known (α is the error signal on the chart 

or the suitable level of significance. For example, α = 0.005 or α =0.001), the control limit of the chart is determined from the above 
equation. The control chart of χ� has a lower limit of zero and an upper 
limit of UCL = χ8,"�   (the αth upper percentile of χ� distribution with p 
degrees of freedom). If at least one of the means is shifted to a new (out 

of control) value, then it is expected that χ9� > χ8,"�  and, consequently, 

the process is declared out of control. Otherwise, if χ9� < χ8,"� , it is 

concluded that the process is in-control. 

2. Literature review 

Additional methods and more details on MSPC can be found in Alt 

(1985), Mason, Tracy, and Young (1995), Runger, Alt, and Montgomery 

(1996), Doganaksoy, Faltin, and Tucker (1991), Jackson (1956, 1959, 

1985, 1991), Hawkins (1991, 1993), Fuchs and Benjamini (1994), and 

Fuchs and Kennel (1998). Some other reviews,comparisons,and works in 

MSPC literature can be found in Wade and Woodall (1993), Wierda 

(1994), Lowry and Montgomery (1995), Umit and Aricigil (2001), 

Venkatasubramanian et al. (2003), Bersimis, Psarakis, and Panaretos 

(2007),  Frisén (2011), Dhini and Surjandari (2016), Margavio and 

Conerly (1995), Sullivan and Woodall (1996), Mason et al. (1997), and 

Puig and Perrer (2014). In recent years, the development and use of 

information and communication technologies(ICT) in manufactur, such 

as Computer Integrated Manufacturing (CIM), modern Data Acquisition 

(DAQ) tool, and online computers, has made simultaneous monitoring of 

multiple quality characteristics easier and more practical. Moreover, the 

development of soft computing technology has enabled researchers to 

employ machine learning algorithms such as neural networks (NN) and 

decision trees (DT) to control multivariate statistical processes. A review 

of NN technique in MSPC can be found in Zorriassatine and Tannok 

(1998), Psarkis (2011), and Atashgar (2015). Following the DT learning 

techniques success in the single-variable SPC process monitoring (Guh, 

2005; Guh & Shiue, 2005), many researchers have been appealed in 
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applying these techniques in multivariate SPC. Guh and Shiue (2008), 

HE and Xio (2011), He, He, and Wang (2013), He et al. (2013) and 

Jiang and Song (2017) have proposed methods for monitoring the 

multivariate processes and detecting failure through DT techniques. Guh 

and Shiue (2008) used one classifier for both process monitoring and 

failure detection. HE and Xio (2011) used one classifier for monitoring 

and p DT classifiers for failure detection (p is the number of variables). 

Elsewhere, HE et al. (2013a) used one classifier for monitoring and 

another for failure detection. In another work, HE et al. (2013b) used 

2p+1 classifiers where one classifier was for process monitoring, p 

classifiers were for detecting a mean shift, and p classifiers were for 

detecting variance shifts. Finally, Jiang and Song (2017) proposed “an 

ensemble method based on bagging and decision tree to resolve the 

problem of diagnosing out-of-control signals in a multivariate 

SPC”(MSPC).The above studies have mainly used two-variable 

processes with normal distribution and Average Run Length (ARL) and 

Classification Accuracy (CCR) as a common measure for evaluation and 

comparison of their methods performance with those of others. All these 

studies have shown the superiority of DT compared with traditional 

methods and neural networks in detecting the mean shift and causes of 

process violation of in-control situation. In general, these algorithms can 

handle requirements of the online multivariate quality control, and can 

automatically and quickly detect the causes of the out-of-control 

situations. In this work, unlike the majority of DT techniques in MSPC 

literature, we utilize a boosted decision tree for quick detection of the 

mean vector shift of a trivariate normal distribution process against χ� 
method. We also utilize other measures like Recall or sensitivity (TPR), 

specificity (SPC), and precision (PPV) for evaluating the performance of 

the proposed model, in addition to ARL and ACC. This method can 

adequately detect small, medium, and large shifts as ±k%σ%, where0.25 ≤k% ≤ 3.0, which has received little attention in previous research. The 
remainder of this paper is organized as follows. The proposed model, 

which is based on a boosted decision tree for online mean shift detection 

in multivariate quality control charts, is introduced in Section 2. A 

normal standard trivariate example is provided to support the working 
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of the proposed model in Section 3. Finally, Section 4 discusses the 

results and findings and also implications for future research.  

3. Method 

The purpose of the present work is to develop a model based on boosted 

DT so that it can work online to quickly and automatically detect mean 

shifts in multivariate production processes. In this model, the assumption 

is that when the process is in-control, quality characteristics follow a 

multivariate normal distribution, whereµ9 and Σ9from phase I of quality 
control have already been known from the dataset of past observations. 

The covariance matrix is also assumed to be constant. Our proposed 

model for detecting whether a multivariate process, either in-control or 

out-of-control, including model training and evaluation steps. It includes 

a boosted classified decision tree (DT boost) based on four classifiers DTC, DTD�, χ�, and χ���� . DTC is the classification decision tree for 
directly detecting the process control state and DTD� is the regression 
decision tree for estimating χE�, where χ� and χ����  are traditional 

statistical methods for detecting the in and out control state of 

multivariate processes. Here, χ� is the Mahalanobis distance and χ����  is 

the observation of a sample with a large Mahalanobis distance from the 

desirable mean. During process monitoring, χ����  calculates χ� when a 
new observation enters the control model. By combining the results of 

the above four methods, DT����� is created in order to determine the 
ultimate result as “in-control” or “out-of-control” situation.  

Assuming that the process follows a multivariate normal distribution, we 

use Monte Carlo simulation to generate the required data that show the 

mean shifts. Before introducing these data to train decision tree model, 

we implement a pre-processing by passing them through a linear 

transformation to transform them to normal standard data with amean 

of zero and a variance of unity. In this regard, we employ t For this 

purpose, we use the following equation and transform the data from F~G�(�, �), F = (H , H�, ⋯ , H�) toF ∼ GJ(K, �):  
HL ← (HL − +L)/OLL 
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where OLL = 1, OLP = QLP , R = 	�(F) ≔ T#�,UF. For more information 
about normalization methods of multivariate data, see (Koch, 2013) and 

(Rencher & Christensen, 2012). 

In the standard state, μ = 0indicatesthat the process is in-control and 
there is no shift of mean. However, in case of a shift in the mean from 

the desirable state zero to μ ≠ 0, then X~G"(μ, Σ) and the mean shift 
vector can be written as μ = Wk , … , k% , … , k"X. Here,k%  shows the size of 
a shift or changes in the mean vector, assuming that −3 < k% < +3. The 
changes in each of the mean vector elements are created in the training 

set with a distance of 0.25,which are then inserted into the model by 

affecting the mean vector. To specify the control state during training, 

we use (χ� ≤ 0.5), which suggests thatonly shifts that are greater than 
0.5 (χ� > 0.5) are considered as the out-of-control state.  
To detect mean shifts during training, we used the moving window 

method for sequence observations. In this approach, data are inserted 

into the model as datasets of a specified size, i.e. window size. These 

datasets that are sequences of observations are known as identification 

moving window and are inserted into the model, assuming that they are 

observation data from a real process. In an identification moving 

window, it is assumed that the process is initially in-control; in the next 

step, a permanent change is applied to the observations. The window 

moves forward at each step, providing new observations to the model. In 

other words, the window plays the role of a mask for the 

observations(Atashgar, 2015). The advantage of the moving window is 

that it not only provides new observations to the model but also 

previous records of recent observations and thus gives a better 

understanding of the process situation and their change. Therefore, 

moving window generally outperforms traditional control charts that 

only use current observations.For each observation at time t, we measure 

the p process variables X� = (x �, . . . , x"�) and the distance of the 
observation from the desirable state δ�, which is shown as (x �, . . . , x"�, δ�) = (X�, δ�). A moving window with a length of w is a 
sequence of observations as follows:  

[\ = [(� , R ), ⋯ (�^ , R^)] 
= `WH , , H ,�, . . . , H ,�, R X, WH�, , H�,�, . . . , H�,�, R�X, . . . , WHa, , Ha,�, . . . , Ha,�, R^Xb 
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where RL = (XL − +)#Σ, (XL − +). A moving window with the length of 
w has (p + 1) ∗ wdata, where pis the number of variables.  
Since detecting the mean shift is harder for smaller δvalues, the weight 
of each sample is set as follows:  

weightW(H , R ), (H�, R�), . . . (Ha, Ra)X = 1/(1 + 	k�) 
The above weights are defined so that more priority is given to small 

shifts detection in training the decision tree. They also prevent over 

fitting.  

Learning is usually defined as “acquiring new or alteration of existing 

knowledge or behavior”. The procedures applied to solve learning 

problems are called learning algorithms or learning machines or just 

learners (Grąbczewski, 2013, p. 2). Using inductive learning machines is 

one way of extracting knowledge from large volume data. These 

machines formulate the extracted knowledge as either decision rules or 

decision tree. This formulation facilitates understanding and interpreting 

of the classification knowledge. The machine learning technique for 

extracting a decision tree from data is called decision tree learning. 

Decision trees are a method of efficient nonparametric that can be used 

for both classification and regression tasks that called predictive. They 

are hierarchical data structures for supervised learning whereby the 

input space is split into local regions in order to predict the dependent 

variable. The decision trees consist of nodes, branches, and leaves 

(Barros, de Carvalho, & Freitas, 2015). When the output of a decision 

tree is a discrete set, it is called a classification tree while the output is a 

real number, it is called a regression tree (Rokach & Maimon, 2015). 

There are various learning algorithms in decision tree literature, such as 

Iterative Dichotomiser 3 (ID3), C4.5, Classification and Regression 

Tree(CART), Chi-squared Automatic Interaction Detector (CHAID),and 

C4.5. However, we do not intend to discuss these algorithms here, as 

detailed discussions on this area of soft computing are already available. 

For more information on this matter, see (Gupta, Rawat, Jain, Arora, & 

Dhami, 2017) and Grąbczewski (2013). In multivariate processes for 

training decision trees, we first record observations from the process 

during control based on the assumption that Σ is known and constant 
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and μ = 0 and σ%% = 1 and σ%l = σl% = ρ%lare correlation coefficients and −1 < σ%l < +1.  
Decision trees used in this study include two trees. The classification tree 

(DTC) and regression tree (DTD�), where DTCis used to determine the 
control state and DTD�is used to estimateχ�. To execute the system, we 
used fit tree and firrtree functions in MATLAB® that are used for 

building and training decision trees (Chan, 2017) and (Mathworks. Click 

Here. Decision Trees - MATLAB & Simulink.  

http://www.mathworks.com/help/stats/decision-trees.html. Updated 

March 28, 2017. Accessed March 28, 2017.).Setting and implementation 

steps of DTCand DTD� learning algorithms are presented in detail in the 
following pseudo-codes: 

1: Input � = (+ , +�, ⋯ , +�), � = Wσ%lX"×", o;\\ F~G�(�, �), F =(H , H�, ⋯ , H�) 
2: Normalization, HL ← (HL − +L)/OLL;\\ hence F ∼ GJ(K, �);  OLL = 1, OLP =QLP , R = 	�(F) ≔ T#�,UF 
3: Set lattice of shifted means �LpL�⋯Lq : = s+Lp , +L� , ⋯ +Lqt , +Lu =−3, −2.75, ⋯ , −0.25,0, +0.25, ⋯ + 2.75, +3.00; 
4:Define function (w < x) ≔ "z{ |}{~�}�" if w <x else "��~ }� |}{~�}�";\\A useful notation as in Matlab syntax. 
5:  ��U��⋯�J : = s	� s�LpL�⋯Lqt < 0.5t;\\Label for control state of the 
process based on the shifted mean. 

6: �LpL�⋯Lq ≔ 1 �1 + 	� s�LpL�⋯Lqt�� ; \\more weights for small shifts in 
decision trees as they are harder to detect. 

7: For each ��U��⋯�J do  \\ for every mean shift scenario of type � = K →��U��⋯�Jconstruct new observation window. 
7.1:Generate � random vectors FLpL�⋯Lq

( ) , FLpL�⋯Lq
(�) , ⋯ FLpL�⋯Lq

(^) ∼ �J(K, �); 
\\ process is in control before running out. 

7.2: Set monitoring window �LpL�⋯Lq9 ≔
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�sFLpL�⋯Lq
( ) , RLpL�⋯Lq

( ) t , sFLpL�⋯Lq
(�) , RLpL�⋯Lq

(�) t , ⋯ sFLpL�⋯Lq
(^) , RLpL�⋯Lq

(^) t� where 
RLpL�⋯Lq

(P) ≔ 	� sFLpL�⋯Lq
(P) t. 

7.3: For � = 1 to � = �; \\ insert into monitoring window the new 
observation from shifted mean process �� s�LpL�⋯Lq , �t. 

7.3.1: Generate new random vector FLpL�⋯Lq
(��a) ∼ �� s�LpL�⋯Lq , �t , RLpL�⋯Lq

(��a) ≔
	� sFLpL�⋯Lq

(��a) t; 
7.3.2: Set new monitoring window �LpL�⋯Lq� ≔�sFLpL�⋯Lq

(�) , RLpL�⋯Lq
(�) t , sFLpL�⋯Lq

(�) , RLpL�⋯Lq
(�) t , ⋯ sFLpL�⋯Lq

(��a) , RLpL�⋯Lq
(��a) t�; \\ slide 

monitoring window one step forward. 

7.3.3: Compute sample mean 

vectorFLpL�⋯Lq
� ≔ (FLpL�⋯Lq

( ) + FLpL�⋯Lq
(�) ⋯ + FLpL�⋯Lq

(^) ) �⁄ , RLpL�⋯Lq
(�) ≔

	� sFLpL�⋯Lq
� t; 

8: Learning set of observation windows ��LpL�⋯Lq� , �LpL�⋯Lq� ; \\ Training 
data for classification tree ���  to detect �LpL�⋯Lq , control state of the 
process. 

9: Learning set of observation windows 

��LpL�⋯Lq� , �FLpL�⋯Lq
� , RLpL�⋯Lq

(�) � , 	� s�LpL�⋯Lqt� ; \\ Training data for 
regression tree ���� to estimate 	� s�LpL�⋯Lqt. 

10: ��� ≔
ClassificationTree �input = �LpL�⋯Lq� , �FLpL�⋯Lq

� , RLpL�⋯Lq
(�) � , output =

�LpL�⋯Lq ; weight = �LpL�⋯Lq� ; Train Classification Tree for detecting 
control state of the process. 

11: ���� ≔
RegressionTree �input = ��LpL�⋯Lq� , �FLpL�⋯Lq

� , RLpL�⋯Lq
(�) �� , output =

	� s�LpL�⋯Lqt ; weight = �LpL�⋯Lq � ; Train Regression Tree for 
estimating 	� s�LpL�⋯Lqt. 
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After running learning algorithms of DTC and DTD� (the above pseudo-
codes), the decision trees are ready for implementation. Now, their 

performance must be evaluated against traditional methods, i.e. χ� ≔χ�WXXand χ���� ≔ χ�(X��a). For this purpose, we use Monte Carlo 
simulation method. The measure used for evaluation of the four 

classification methods is Average Run Length (ARL). By definition, the 

ARL is “the average number of points that must be plotted before a 

point indicates an out-of-control condition”(Montgomery,2013). ARL0 

shows that the process is in-control, while ARL1 shows that the process 

is out of control. At the beginning of training and testing, the ARL of all 

four methods is reset to zero, which is incremented one at a time by 

every progress stage. There are various methods for detecting an out-of-

control state. However, some of these methods detect an out-of-control 

state wrongly while the process is really in-control; i.e., they have a 

small ARL0. On the other hand, some methods do not show an out-of-

control state while the process is out-of-control; i.e., they have long 

ARL1.Unfortunately, few processes monitoring methods and measures 

can quickly detect true out-of-controls while at the same time, avoid 

false detection of the out-of-control situation when the process is really 

in control. For example, the χ�-based method has the advantage of long 
ARL0, but it has also a long ARL1. The boosted decision tree, which 

will be introduced in the following sections, has a short ARL1 while 

benefitting from a fairly longer ARL0 compared to traditional statistical 

methods likeχ�. To enhance the above methods, we create a boosted 
classification decision tree (DT�����) that combines detection results of DTC, DTD� , χ� , χ���� and provides the ultimate result as the in-control or 

the out-of-control state. The boosting classifiers idea was presented for 

the first time by Freund and Schapire (1995, 1996; 1999). They have 

proven some important properties justifying the solutions. In general, 

boosting is a method of converting “weak” learning algorithm to a 

“strong “algorithm with an arbitrarily high accuracy(Grąbczewski,2013) 

and includes various methods such as AdaBoost,Gradient Boosting, and 

XG Boostand so on (Schapire & Freund, 2012). 

The following pseudo-codes present implementation of the prepared and 

boosted decision tree algorithm for detecting the process control states 

using four classifiers (methods): 
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12: For each ��U��⋯�J do  \\ for every mean shift scenario of type � = K → ��U��⋯�Jconstruct new observation window. 
12.1:Generate � random vectors FLpL�⋯Lq

( ) , FLpL�⋯Lq
(�) , ⋯ FLpL�⋯Lq

(^) ∼ �J(K, �); 
\\ process is in control before running out. 

12.2: Set monitoring window �LpL�⋯Lq9 ≔�sFLpL�⋯Lq
( ) , RLpL�⋯Lq

( ) t , sFLpL�⋯Lq
(�) , RLpL�⋯Lq

(�) t , ⋯ sFLpL�⋯Lq
(^) , RLpL�⋯Lq

(^) t� where 
RLpL�⋯Lq

(P) ≔ 	� sFLpL�⋯Lq
(P) t. 

12.3: Set w¦���§� ≔ 0,  w¦���¨ ≔ 0,  w¦��F� ≔ 0, w¦��F���� ≔ 0; \\ 
Average Run Length of the four method is reset to zero 

12.4: while ( ���� < 	©,�� ª¦ ��� = incontrol ª¦ 	F� < W	©,�� «⁄ X ª¦ 	F���� <	©,�� ; � + +)  \\ while the four criteria do not detect process run out 
12.4.1: Generate new random vector FLpL�⋯Lq

(��a) ∼ �� s�LpL�⋯Lq , �t , RLpL�⋯Lq
(��a) ≔ 	� sFLpL�⋯Lq

(��a) t; 
12.4.2: Set new monitoring window �LpL�⋯Lq� ≔�sFLpL�⋯Lq

(�) , RLpL�⋯Lq
(�) t , sFLpL�⋯Lq

(�) , RLpL�⋯Lq
(�) t , ⋯ sFLpL�⋯Lq

(��a) , RLpL�⋯Lq
(��a) t�; \\ slide 

monitoring window one step forward. 

12.4.3: Compute sample mean 

vectorFLpL�⋯Lq
� ≔ (FLpL�⋯Lq

( ) + FLpL�⋯Lq
(�) ⋯ + FLpL�⋯Lq

(^) ) �⁄ , RLpL�⋯Lq
(�) ≔

	� sFLpL�⋯Lq
� t; 

12.4.4: If  ���: = ��� ��LpL�⋯Lq� , �FLpL�⋯Lq
� , RLpL�⋯Lq

(�) �� = incontrol then w¦���¨ + +; 
12.4.5: If ���� ≔ ���� ��LpL�⋯Lq� , �FLpL�⋯Lq

� , RLpL�⋯Lq
(�) �� < 	©,��  then  w¦���§� + +; 

12.4.6: If 	F� ≔ 	� �FLpL�⋯Lq
� � = RLpL�⋯Lq

(�) < W	©,�� «⁄ X then   w¦��F� + +; 
12.4.7: If 	F���� ≔ 	� �FLpL�⋯Lq

(��a) � = RLpL�⋯Lq
(��a) < 	©,��  then w¦��F���� + +; 
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12.4.8: ¬W � ⋯ �, �X ≔ ���� , W���� < 	©,�� X, s	F� < W	©,�� «⁄ Xt , W	F���� <	©,�� X, �LpL�⋯Lq� ;\\ record detection performance of the four measures. 
12.4.9: ®W � ⋯ �, �X ≔ ���� , ���� , 	F�, 	F���� , �LpL�⋯Lq� ; \\ record values 
of the four measures for constructing boosted tree. 

12.5: ¯°±W � ⋯ �X ≔ �w¦���¨ , w¦���§� , w¦��F� , w¦��F���� �\\ record the 
ARL of the four measures for each shifted mean. 

13: Learning set of observations ² ≔ `®W � ⋯ �, �Xb; \\ Training data 
for boosted tree constructed ���� , ��� , 	F� , 	F���� to learn control state 

of the process. 

14: ������� ≔ClassificationTree sinput = `���W � ⋯ �, �X, ����W � ⋯ �, �X,	F�W � ⋯ �, �X, 	F���� W � ⋯ �, �Xb; weight = �LpL�⋯Lq ;  output =�LpL�⋯Lqt ; Train Boosted Classification Tree for detecting control state 
of the process. 

Many measures are available for evaluating a quality control method 

(and generally a classification method). Some of these measures are 

Accuracy (ACC), Sensitivity (TPR), Specificity (SPC), and Precision 

(PPV) (Rokach and Maimon,2015).  

Typically, when a control method performs well at the in-control state 

(long ARL0), it performs weakly when the process becomes out of 

control, and vice versa. In this connection, it is difficult to find a method 

that has a long ARL0 and a short ARL1. Performance evaluation 

measures like ARL cannot be defined as target values in training a 

decision tree. These measures (including ARL) can only be estimated 

through Monte Carlo simulation after implementing the detection 

method. In most application of control sates detection, the CCR is not a 

sufficient measure for evaluation, especially when the number of 

generated in-control testing samples is much more than the number of 

the out-of-control ones. This behavior is due to the fact that a control 

system with a tendency toward the in-control detection (i.e., to always 

announce a process in-control)shows a high CCR, while it may act 

weakly in face of the out-of-control state. Therefore, in these cases, the 
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sensitivity and specificity and Precision measures can be used as another 

possibility or choice to the accuracy measures(Rokach and 

Maimon,2015).In this work, we used Monte Carlo simulation to evaluate 

the performance and used PPV, TPR, SPC, and ACC to evaluate the 

obtained results. In addition, ARL functions were also calculated for 

each method. The following pseudo-codes show the algorithm for 

calculating the measures. 

15: For each ��U��⋯�J do  \\ for every mean shift scenario of type � = K → ��U��⋯�Jconstruct new observation window. 
15.1:Generate � random vectors FLpL�⋯Lq

( ) , FLpL�⋯Lq
(�) , ⋯ FLpL�⋯Lq

(^) ∼ �J(K, �); 
\\ process is in control before running out. 

15.2: Set monitoring window �LpL�⋯Lq9 ≔�sFLpL�⋯Lq
( ) , RLpL�⋯Lq

( ) t , sFLpL�⋯Lq
(�) , RLpL�⋯Lq

(�) t , ⋯ sFLpL�⋯Lq
(^) , RLpL�⋯Lq

(^) t� where 
RLpL�⋯Lq

(P) ≔ 	� sFLpL�⋯Lq
(P) t. 

15.3: Set w¦���³´´µ¶ ≔ 0, w¦���§� ≔ 0,  w¦���¨ ≔ 0,  w¦��F� ≔0, w¦��F���� ≔ 0; \\ Average Run Length of the five method is reset 
to zero  

15.4: while 

(������� = incontrol OR ���� < 	©,�� ª¦ ��� = incontrol ª¦ 	F� <W	©,�� «⁄ X ª¦ 	F���� < 	©,�� ; � + +)  \\ while the five criteria do not 
detect process run out   

15.4.1: Generate new random vector FLpL�⋯Lq
(��a) ∼ �� s�LpL�⋯Lq , �t , RLpL�⋯Lq

(��a) ≔ 	� sFLpL�⋯Lq
(��a) t;  

15.4.2: Set new monitoring window �LpL�⋯Lq� ≔�sFLpL�⋯Lq
(�) , RLpL�⋯Lq

(�) t , sFLpL�⋯Lq
(�) , RLpL�⋯Lq

(�) t , ⋯ sFLpL�⋯Lq
(��a) , RLpL�⋯Lq

(��a) t�; \\ slide 
monitoring window one step forward. 

15.4.3: Compute sample mean 

vectorFLpL�⋯Lq
� ≔ (FLpL�⋯Lq

( ) + FLpL�⋯Lq
(�) ⋯ + FLpL�⋯Lq

(^) ) �⁄ , RLpL�⋯Lq
(�) ≔

	� sFLpL�⋯Lq
� t;  
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15.4.4: If  ���: = ��� ��LpL�⋯Lq� , �FLpL�⋯Lq
� , RLpL�⋯Lq

(�) �� = incontrol then w¦���¨ + +; 
15.4.5: If ���� ≔ ���� ��LpL�⋯Lq� , �FLpL�⋯Lq

� , RLpL�⋯Lq
(�) �� < 	©,��  then  w¦���§� + +; 

15.4.6: If 	F� ≔ 	� �FLpL�⋯Lq
� � = RLpL�⋯Lq

(�) < W	©,�� «⁄ X then   w¦��F� + +; 
15.4.7: If 	F���� ≔ 	� �FLpL�⋯Lq

(��a) � = RLpL�⋯Lq
(��a) < 	©,��  then w¦��F���� + +; 

15.4.8: If �������: = �������`��� , ���� , 	F� , 	F���� b = incontrol then  w¦���¸}}¹~ + +; 
15.4.9: ¬W � ⋯ �, �X ≔��������, ��� , W���� < 	©,�� X, s	F� < W	©,�� «⁄ Xt , W	F���� <	©,�� X, �LpL�⋯Lq� ;\\ record detection performance of the five measures. 
15.5: ¯°±W � ⋯ �X ≔ �w¦���³´´µ¶ , w¦���¨ , w¦���§� , w¦��F� , w¦��F���� �\\ 

record the ARL of the four measures for each shifted mean.  

16: º ≔ #{rows in ¬W � ⋯ �, �X with �LpL�⋯Lq = out of control}, \\ real 
out of control states in the process, 

17: ¾ ≔ #{rows in ¬W � ⋯ �, �X with �LpL�⋯Lq = in control}, \\ real in 
control states in the process, 

18: �º(�������) ≔ #{rows in ¬W � ⋯ �, �X with ������� = �LpL�⋯Lq =out of control}, \\ using 15.4.9 
19: �¾(�������) ≔ #{rows in ¬W � ⋯ �, �X with ������� = �LpL�⋯Lq =in control} ,\\ using 15.4.9 
20: ¿º(�������) ≔ #{rows in ¬W � ⋯ �, �X with ������� =out of control ≠ �LpL�⋯Lq = in control},\\ using 15.4.9 
21: ¿¾(�������) ≔ #{rows in ¬W � ⋯ �, �X with ������� = in control ≠�LpL�⋯Lq = out of control},\\ using 15.4.9 
22: �º¦(�������) ≔ W�º(�������)X/º; \\ true positive rate or 

sensitivity, 
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23: ÀºÁ(�������) ≔ W�¾(�������)X/¾; \\ true negative rate or 
specificity, 

24: ººÂ(�������) ≔ W�º(�������)X/W�º(�������) + ¿º(�������)X; \\ 
positive predictive value or precision, 

25: wÁÁ(�������) ≔ W�º(�������) + �¾(�������)X/(º + ¾); \\ accuracy, 
26: ⋯\\ ratios for other ��� , ���� , 	F� , 	F���� computed similarly. 

We expect that our boosted decision tree (��ÃÄÄÅ\) outperforms 
the other four methods.  

4. Findings 

To show how the proposed model works, we run it on a standardized 

trivariatenormal process. In this example, values of process parameters 

are as follows:  

� = [+ , +�, , +�] = [0,0,0], 
  Æ = Ç 1 Q � Q �Q� 1 Q��Q� Q�� 1 È =  Ç1.0000 −0.06531 −0.2649−0.06531 1.0000 0.96587−0.2649 0.96587 1.000 È 

where μ is the mean vector, R is correlation matrix, andρ%lis the 
correlation coefficient between variables. ρ%lvalues were selected so that 
all three variables were strongly correlated. As a result, a situation is 

created that is difficult for traditional methods to analyze. For the in-

control observations, we used a simulation. Several approaches exist for 

generating the random variables in the trivariate normal process. These 

approaches have been discussed in detail in the simulation literature. In 

this example, we generate random samples from a trivariate normal 

process using mvnrnd function in MATLAB®. Based on the method 

proposed by Ryan (Ryan, 2011) and methods used by Guh and Shieu 

(2008), the first type error α is determined so that α/2p=0.00135, which 
is equivalent to 3σ in the single-variable state. If p = 3, then α = 0.0081; 

thus, ARL is 124 (= (1/α)). The upper limit control for χ� is UCLDÎ� =chi2inv(1 − α, 3) = 11.8 and UCLDÎ� = UCLDÎ� w = 0.786⁄ ,where x =(x + ⋯ + xa) w⁄ and w, the observation window length, is 15 (w = 15).  
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The out-of-control state condition in decision tree training is χE� > χ8,�� , 

where χ8,��  is the upper control limit.  

To train the in-control state (0, ..., 0)µ = , a total of 5,000 random 

samples were generated and for each out-of-control state 100 samples 

were generated (a total of (12�) ∗ 100 + 5000mean vector shifts). 
Therefore, the number of observation samples for training was(100 ×(12�) + 5000) ∗ w. We used 5000 * w samples for the in-control and (100 × (12�)) ∗ w samples for each of the mean shift states (w = 15). 
We began training at point 16, where the first window of the out-of-

control observations can be formed. An input to the decision tree is as 

follows:  

((H , R ), (H�, R�), . . . , (H Ñ, R Ñ)) 
Classes label were 1 for the out-of-control state and 0 for the in-control 

state with equal weights. The uniform and priorfunctions inMATLAB® 

are used for this purpose. To prevent overfitting, there must be at least 

40 observations in each leaf (minleaf = 40).  

In this step, we train our decision trees and then can begin to test them. 

During the testing, we also estimate ARL0 and ARL1. To evaluate the 

performance, we first consider the multivariate process at the in-control 

state and generate a sample fromG�(0, Σ) with w = 15. From sample 16 
onward, we generate random samples from G�(μ, Σ) and continue until 
the first out-of-control detection occurs. By considering an observation 

window with w = 15 and new observations (from 1 to 124 steps) from 

three-variable vectors and their χ� values, we have:  
(12 × 12 × 12 ∗ 100 + 5000) × 15 × 124 × (3 + 1) = 1322832000 

To compare χE� and DT�����, we use ARL.Table 1 shows ARL values for χ� and DT�����methods. As mentioned previously, our assumption is that 
distances, or shifts in each element of the mean vector, are 0.25.The 

ARL values, which are a function of δ, were obtained for the above two 

methods(χ�andDT�����) through the simulation. These values are 
presented in Table 1 and Fig.1. Due to lack of space, only some values 

are shown in the table. 
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Table 1. Comparison of ARLs between the χ�and DT�����methods 
δ = χE� ARLDÓ�  ARLÔÕ³´´µ¶ 
0 127.00 135.36 

0.07 112.00 29.00 

0.27 75.80 35.80 

0.39 33.80 31.00 

0.4 33.60 20.60 

0.43 32.20 16.80 

0.54 23.60 10.20 
0.62 16.80 12.20 

0.79 11.20 6.20 

0.8 15.30 16.40 

0.83 11.20 7.40 

0.86 12.40 12.20 

0.92 8.80 8.00 

0.94 14.20 10.80 

1 12.80 9.50 
1.09 15.80 8.60 

1.16 11.40 8.60 

1.2 13.00 10.80 

1.23 10.40 6.60 

1.24 13.60 8.20 

1.28 12.60 10.00 

1.34 11.80 8.40 

1.35 11.80 8.80 
1.44 12.40 7.40 

1.52 8.60 9.00 

1.57 10.60 10.00 

1.6 8.80 8.80 

1.71 9.80 4.60 

1.72 6.80 5.40 

1.74 10.60 5.60 

1.75 8.80 5.80 
1.77 9.80 6.90 

1.79 11.00 7.80 

1.81 10.00 8.20 

1.82 9.60 5.80 

1.83 9.50 6.50 

1.91 8.80 5.20 

1.92 9.60 5.80 

1.96 8.00 6.60 
1.97 6.20 5.40 
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Figure 2. ARL Curves for theχ�andDT����� 

In Fig. 1, the vertical axis shows ARL values and the horizontal axis 

shows δ values. It is observed that DT����� has longer in-control ARLs 
and shorter out-of-control ARLs. This curve and Table 1(less values of 

ARL in the third column) well demonstrate that boosted decision tree 

outperforms the chi-square method.Again, the ACC, SPC, TPR, and PPV of 
each method were measured through the simulation. The results are 

shown in Table 2.  

Table 2. Performance of different classifiers for mean shifts detection 

Classifier Accuracy(ACC) Sensitivity(TPR) Specificity(SPC) Precision(ppv) χ� 0.9568 0.8771 0.9918 .09791 DTD� 0.9516 0.9274 0.9643 0.9172 χ����  0.9618 0.8967 0.9903 0.9760 DTC 0.9564 0.9217 0.9716 0.9343 DT����� 0.9709 0.9245 0.9912 0.9788 

According to Table 2, DT�����outperforms the other methods in terms of 
accuracy, sensitivity, specificity, and precision. It is also observed that χ� 
and χ����  have the weakest performance and the boosted decision tree 

has an improved performance compared to ordinary trees.  

0

20

40

60

80

100

120

140
0

0
.3
9

0
.4
4

0
.5
6

0
.7
9

0
.8
3

0
.9
4

1
.1
1

1
.2
3

1
.3
4

1
.5
2

1
.7
1

1
.7
5

1
.8
1

1
.9
1

1
.9
6

2
.0
6

2
.1
7

2
.2
4

2
.3
2

2
.4
4

2
.4
8

2
.5
4

2
.6
4

2
.7
3

2
.8
4

3
.0
8

ARL0 is longer. 

ARL1 is shorter. 



100 A. Asadi, Y. Farjami 

5. Discussion and Conclusions 

Soft computing methods are a suitable alternative to traditional 

multivariate quality control charts in detecting the mean shifts. In 

the current work, we developed a boosted decision tree and showed 

that it outperforms the	� control chart.  
The performance of the proposed model was evaluated and 

confirmed, even in detecting small mean shifts, through a 

trivariate process example and by means of ARL functions and 

Accuracy, Sensitivity, Specificity, and Precision measures. The 

findings showed that the proposed method can adapt to the online 

multivariate quality control systems and can quickly and 

automatically detect the in-control and out-of-control states. Based 

on the findings, it is recommended applying the proposed method 

with non-normal data and comparing itwith other machine 

learning techniques such as support vector machines(SVM)and 

neural networks.  
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