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Abstract 

This paper attempts to compare the forecasting performance of the 

ARIMA model and hybrid ARMA-GARCH Models by using daily data 

of the Iran�s exchange rate against the U.S. Dollar (IRR/USD) for the 
period of 20 March 2014 to 20 June 2015. The period of 20 March 2014 

to 19 April 2015 was used to build the model while remaining data were 

used to do out of sample forecasting and check the forecasting ability of 

the model. All the data were collected from central bank of Iran. First of 

all, the stationary of the exchange rate series is examined using unit root 

test which showed the series as non stationary. To make the exchange rate 

series stationary, the exchange rates are transformed to exchange rate 

returns. By using Box-Jenkins method, the appropriate ARIMA model 

was obtained and for capturing volatilities of returns series, some hybrid 

models such as: ARIMA-GARCH, ARIMA-IGARCH, ARIMA-GJR and 

ARIMA-EGARCH have been estimated. The results indicate that in terms 

of the lowest RMSE, MAE and TIC criteria, the best model is 

ARIMA((7,2),(12)) ˚ EGARCH(2,1). This model captures the volatility 

and leverage effect in the exchange rate returns and its forecasting 

performance is better than others.  
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1. Introduction    

Forecasting the amount of economic variables by using appropriate models 

has always been very important to economists and policymakers. In other words, 

being aware of different forecasting models� abilities and identifying the most 

efficient model among the rival models is highly crucial in the process of policy 

making. For this reason, various models of estimating and forecasting economic 

variables have been created. One of the variables which play a basic role in 

international trade and finance for Iran�s economics is exchange rate. Because, 
fluctuations in the exchange rate may have a significant impact on the 
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macroeconomic variables such as interest rates, prices, wages, unemployment, 

and the level of output. So, determination the behavior of exchange rate series is 

important for the investors and policy makers. Traditional economic models such 

as  Box-Jenkins or ARIMA Model, assume that variance of residuals is constant, 

However in many cases residuals of the estimated model have heteroscedastic 

conditional variances. In such condition, one faces a stochastic variable with a 

heteroscedastic variance, and needs to forecast conditional variance or volatility 

of a time series. In this paper as later will be shown, the residuals of the estimated 

ARMA model for the exchange rate of Iran have conditional heteroscedasticity, 

hence it should be used models that are capable of dealing with the volatility of 

the exchange rate series. Therefore in this paper, for capturing volatilities of 

exchange rate returns, beside ARMA model, we use various volatility models 

such as Autoregressive Conditional Heteroskedasticity  (ARCH), Generalized 

ARCH (GARCH, Integrated GARCH (IGARCH), Threshold GARCH 

(TGARCH) / the Glosten, Jagannathan and Runkle (GJR, Exponential GARCH 

(EGARCH. To evaluating the forecasting performance of various models, three 

different criteria have been used; consist of: Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE) and Theil Inequality Coefficient (TIC).  

Following this Section 1, Section 2 reviews the existing literature and the 

empirical findings of the various models. Section 3 deals with the Methodology 
wherein formally defines theory and process of ARIMA, ARIMA-GARCH, 

ARIMA-IGARCH, ARIMA-JGR_GARCH and ARIMA-EGARCH  models and 

introduced Performance Measures. The empirical results have been discussed in 

Section 4 followed by the conclusions which is given in Section 5. The reference 

can be found at the end. 

 

2. Literature Review  

A time series is a set of numbers that measures the status of some activity 

over time. It is the historical record of some activity, with measurements taken at 

equally spaced intervals with a consistency in the activity and the method of 

measurement. 

The primary objective of time series modeling is to study techniques and 

measures for drawing inferences from past data. The models can be employed to 

describe and analyze the sample data, and make forecasts for the future. The 

main advantage of time series models is that they can handle any persistent 

patterns in data (Abdullah & Tayfur , 2004). 

Accurate prediction of different exchange rates is important as substantial 

amount of trading takes place through the currency exchange market. The 

prediction is affected by economic and political factors and also involves 

uncertainty and nonlinearity. Thus accurate prediction of exchange rates is a 

complex task ( Minakhi Rout et al, 2014). In the literature many interesting 
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publications on exchange rate prediction have been reported as detailed in 

following. 

Two broad ways can be applied for modeling and forecasting of exchange 

rate; one of them is multivariate approach that it is base on estimation 

relationship between exchange rate as dependent variable and some economic 

variable such as interest rate, output, money supply, inflation, balance of 

payment etc as explanatory variables. According to this, researchers and 

academics suggest a number of approaches to forecast exchange rate like; 

monetary approach, demand-supply approach, asset approach, portfolio balance 

approach and etc. Empirical studies use some of them very frequently especially 

monetary approach in different versions like flexible price monetary model 

(Frankel 1976 & Bilson 1978), the sticky price monetary model (Dornbusch 

1976, Frankel 1979b) and Hooper˚ Morton model (Meese & Rogoff 1983, 

Alexander & Thomas 1987, Schinasi & Swami 1989 and Meese & Rose 1991).  

Franklin (1981) and Boothe and Glassman (1987) found that monetary/asset 

models are not very useful to explain the movements in exchange rates under 

flexible exchange rate system. John Faust et al (2002) examined the real-time 

forecasting performance of standard exchange rate models. A development in the 

focus came by the work of some of the researchers like (Taylor & Peel 2000; 

Taylor et al. 2001). They argued that underlying economic theories are 

fundamentally sound, still economic exchange rate models were not able to give 

superior forecasting performance because these models assume a linear 

relationship between the data. In reality these data shows nonlinearity. They 

argued that underlying fundamentals shows long run equilibrium condition only, 

towards which the economy adjusts in a nonlinear fashion (M.K. Newaz, 2008). 

But this structural methodology has several limitations, which makes it less 

valuable in the field of finance. One such reason is that data for these macro 

economic variables are available at the most monthly, while in finance one need 

to deal with very high frequency data such as daily, hourly or even minutes wise 

also. Again, these structural models are not quite useful for out of sample 

forecasting. To avoid these problems, one often use univariate models or a-

theoretical models which try to model and predict financial variables using 

information contained only in their own past values and possibly current and past 

values of an error term. One especial class of time series models are ARIMA 

models which are often associated with Box and Jenkins (1976) for their efforts 

to systematize the whole methodology of estimating, checking and forecasting 

using ARIMA models(Mahesh, 2005). The Box˚ Jenkins method consists of three 

steps: identification, parameter estimation and forecasting. Among these three 

steps, the identification step, which involves order determination of the AR and 

MA parts of ARMA model, is important. This step requires statistical 

information such as the autocorrelation and partial autocorrelation (Box and 
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Jenkins, 1976). The problem of estimating the order and the parameters of an 

ARMA model is still an active area of research (Rojasa et al., 2008). Building 

good ARIMA models generally requires more experience than commonly used 

statistical methods such as regression. 

The Box-Jenkins variant of the ARMA model is predestinated for applications 

to non stationary time series that become stationary after their differencing. 

 Differencing is an operation by which a new time series is built by taking the 

successive differences of successive values, such as x(t) ˚  x(t-1) along the non 

stationary time series pattern. In the acronym ARIMA, the letter �I� stands for 
integrated. The widely accepted convention for defining the structure of ARIMA 

models is ARIMA(p, q, d), where p stands for the number of autoregressive 

parameters, q is the number of moving-average parameters, and d is the number 

of differencing passes (Ajoy and Dobrivoje, 2005). 

Bellgard and Goldschmidt (1999) predicted the exchange rates with the use of 

ARIMA models, However they concluded that these models are not very suitable 

for predicting the exchange rates. Dunis and Huang (2002) who were using 

ARMA (4,4) were of the opposite opinion; their results were, however, 

insignificant. 

Weisang and Awazu (2008) presented three ARIMA models which used 

macroeconomic indicators to model the USD/EUR exchange rate. They 

discovered that over the time period from January 1994 to October 2007, the 

monthly USD/EUR exchange rate was best modeled by a linear relationship 

between its preceding three values and the current value. These authors also 

concluded that ARIMA (1,1,1) is the most suitable model for the prediction of 

the time series of USD/EUR exchange rate. 

Fat Codruta Maria and Dezsi Eva(2011), using Box Jenkins models 

investigated the behavior of daily exchange rates of the Romanian Leu against 

Euro, United States Dollar, British Pound, Japanese Yen, Chinese Renminbi and 

the Russian Ruble  using  the exponential smoothing techniques and ARIMA 

models. The results indicate that exponential smoothing techniques in some cases 

outperform the ARIMA models. 

Nwankwo Steve C(2014), applied Box-Jenkins methodology for ARIMA 

model to exchange rate (Naira to Dollar) within the periods 1982-2011 and it was 

proved test the best fit is AR(1) model,  because it has the most suitable AIC. 

This was achieved through the diagnostic checking which identified it as the best 

fit. 

Despite the fact that ARIMA is powerful and flexible in forecasting, however it 

is not able to handle the volatility and nonlinearity that are present in the data 

series. Previous studies showed that generalized autoregressive conditional 

heteroskedatic (GARCH) models are used in time series forecasting to handle 

volatility in the commodity data series including exchange rates. Hence, this 

study investigate the performance of hybridization of potential univariate time 
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series specifically ARIMA models with the superior volatility model (GARCH 

family models), Combining models or hybrid the models can be an effective way 

to overcome the limitations of each components model as well as able to improve 

forecasting accuracy. In recent years, more hybrid forecasting models have been 

proposed applying Box-Jenkins models including an ARIMA model with 

GARCH to time series data in various fields for their good performance. Wang et 

al. (2005) proposed an ARMA-GARCH error model to capture the ARCH effect 

present in daily stream flow series. There is two-phase procedure in the proposed 

hybrid model of ARIMA and GARCH. In the first phase, the best of the ARIMA 

models is used to model the linear data of time series and the residual of this 

linear model will contain only the nonlinear data. In the second phase, the 

GARCH is used to model the nonlinear patterns of the residuals. This hybrid 

model which combines an ARIMA model with GARCH error components is 

applied to analyze the univariate series and to predict the values of approximation 

(S.R. Yaziz et al., 2013).  

The Autoregressive Conditional Heteroscedasticity (ARCH) and Generalized 

Autoregressive Conditional Heteroscedasticity (GARCH) models were 

developed by Engle (1982) and extended by Baillie (2002) and Nelson (1991). 

The first generation of GARCH models cannot capture the stylized fact that 

bad (good) news increase (decrease) volatility. This limitation has been 

overcome by the introduction of more flexible volatility specifications which 

allow positive and negative shocks to have a different impact on volatility. This 

more recent class of GARCH models includes the Exponential GARCH 

(EGARCH), the Glosten, Jagannathan, and Runkle- GARCH (GJR-GARCH) and 

the Power GARCH (PGARCH) model (Chatayan et al, 2010). 

Some of the studies using hybrid model of ARIMA and GARCH family of 

models are as follows: 

Balaban (2004) compared the forecasting performance of symmetric and 

asymmetric GARCH models with the US Dollar/Deutsche Mark returns series 

was filtered using an AR (1) process and the GARCH (1, 1), GJR-GARCH(1,1) 

and EGARCH(1,1) volatility equations are used. The author found that the 

EGARCH model performs better in producing out of sample forecasts with the 

GARCH (1, 1) closely following whereas the GJR-GARCH fares worst. 

Moshiri and Seifi (2008), examined Nonlinearity in Exchange Rates of Iran 

and Forecasting it by ANN and GARCH models. The results show that ANN 

outperforms the GARCH model in forecasting the exchange rates, but generates 

the same results as the alternative models in forecasting the rate of change of the 

exchange rates. 

Chatayan Wiphatthanananthakul and Songsak Sriboonchitta (2010), 

Compared among ARMA-GARCH, -EGARCH, -GJR, and -PGARCH models 

on Thailand Volatility Index (TVIX). The ARMA-PGARCH is found to be the 
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best model with the lowest AIC criteria values but the ARMA-EGARCH model 

has the lowest SBIC criteria value. However, with the second moment condition, 

MAPE and RMSE, ARMA-GJR is the best fitting model for TVIX. 

Shahla Ramzan et al (2012), applied ARCH family of models for modeling 

and forecasting exchange rate dynamics in Pakistan for the period ranging from 

July 1981 to May 2010 and ARMA(1,1)- GARCH (1,2) is found to be best to 

remove the persistence in volatility while ARMA(1,1)-EGARCH(1,2) 

successfully overcome the leverage effect in the exchange rate returns under 

study. 

Milton Abdul Thorlie1 et al(2014), examined the accuracy and forecasting 

performance of volatility models for the Leones/USA dollars exchange rate 

return, including the ARMA, Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH), and Asymmetric GARCH models with normal and 

non-normal (student�s t and skewed Student t) distributions. Their findings 
showed that  ARMA-GARCH) and ARMA-EGARCH model better fits under the 

non-normal distribution and the ARMA-GJR model using the skewed Student t- 

distribution is most successful and better forecast the Sierra Leone exchange rate 

volatility. 

There are many studies that using various models for the modeling and 

forecasting foreign exchange rates data of USD versus Iran Rial (IRR); But so 

far, the hybrid ARMA and GARCH family models are not used for the modeling 

and forecasting IRR/USD. This paper offers insights on exchange rate in Iran and 

measures the sources of volatility by using Autoregressive Conditional 

Heteroscedasticity (ARCH), Integrated Generalized Autoregressive Conditional 

Heteroscedasticity (IGARCH), Exponential General Autoregressive Conditional 

Heteroscedasticity (EGARCH) and the Glosten, Jagannathan and Runkle (GJR-

GARCH) techniques. Hence, the focus of presence paper is using the hybrid 

ARIMA-ARCH, ARIMA-IGARCH, ARIMA-EGARCH and ARIMA-GJR 

models for modeling and forecasting Iran�s exchange rates that will be presented 
in the empirical study section.  

 

3. Methodology 

In this section, we briefly present the models specification, conditional 

distributions and forecasting criteria to model the volatility of Rial/US$ exchange 

rate returns in the Iran�s economy. This article analyses the process and volatility 
of the Iran�s exchange rate by using various models such as: AIRMA, AIRMA-

GARCH, AIRMA-IGARCH, AIRMA-GJRGARCH and AIRMA-EGARCH. In 

this study three different criteria, Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE) and Theil Inequality Coefficient (TIC) are used to 

evaluate the forecasting performance of the various models. 
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3.1. The Box-Jenkins for ARIMA Model  

Auto-Regressive Integrated Moving Average (ARIMA) model is one of the 

time series forecasting methods which says that the current value of a variable 

can be explained in terms of two factors; a combination of lagged values of the 

same variable and a combination of a constant term plus a moving average of 

past error terms. To build an ARIMA model one essentially use Box-Jenkins 

methodology (1976), which is an iterative process and involves four stages; 

Identification, Estimation, Diagnostic Checking and forecasting. As the Box 

Jenkins (AR, MA, ARMA or ARIMA) models are based on the time series 

stationary,  If underlying series is non-stationary, then first it is converted into a 

stationary series either by using differencing approach or taking logarithms or 

regressing the original series against time and by taking the error terms of this 

regression (Mahesh, 2005). The series stationary was tested by applying the 

ADF-Augmented Dickey-Fuller (DICKEY & FULLER, 1979) and PP-Phillips-

Perron unit root tests (PHILLIPS P., 1988). ADF was performed for the scenario 

with a constant, without a constant and with a trend (Daniela Spiesov, 2014). If it 

is needed for the time series to have one differential operation to achieve 

stationarity, it is a I(1) series. Time series is I(n) in case it is to be differentiated 

for n times to achieve stationarity. Therefore, ARIMA (p, d, q) models are used 

for the non-stationary time series, specifically the autoregressive integrated 

average models, where d is the order of differentiation for the series to become 

stationary. 

Box-Jenkins ARIMA is known as ARIMA (p, d, q) model where p is the 

number of autoregressive (AR) terms, d is the number of difference taken and q 

is the number of moving average (MA) terms. ARIMA models always assume 

the variance of data to be constant. The ARIMA (p, d, q) model can be 

represented by the following equation: 

𝑦𝑡 = ∅1𝑦𝑡−1 + ⋯ . +∅𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞                             (1) 

Where    εt~N(0, σt
2) ,  p and q are the number of autoregressive terms and the 

number of lagged forecast errors, respectively. .  

The identification of modeling the conditional mean value is based on the 

analysis of estimated autocorrelation and partial autocorrelation function (ACF, 

PACF). These estimations may be strongly inter-correlated, it is therefore 

recommended not to insist on unambiguous determination of the model order, but 

to try more models. We must not forget to carry out the verification, which is 

based on retrospective review of the assumptions imposed on the random errors.  

Validation of ARMA (p, q) models is based on minimizing the AIC (Akaik�s 
information criterion) and BIC (Schwarz�s information criterion) criteria. Given 
that financial data are very often characterized by high volatility, it is necessary 

to test the model for ARCH effect, i.e. presence of conditional heteroscedasticity 

(Mahesh, 2005). Regarding heteroscedasticity it is therefore a situation where the 
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condition of finite and constant variance of random components is violated. If 

ARCH test indicates that the variance of residuals is non constant, we can use 

ARCH family models for capturing volatilities of model.  

3.2. The ARCH family models 

The major assumption behind the least square regression is homoscedasticity 

i.e constancy of variance. If this condition is violated, the estimates will still be 

unbiased but they will not be minimum variance estimates. The standard error 

and confidence intervals calculated in this case become too narrow, giving a false 

sense of precision. ARCH and related models handle this by modeling volatility 

itself in the model and thereby correcting the deficiencies of least squares model 

(AK Dhamija, 2010). 

The ARCH Model 

A simple strategy is to forecast the conditional variance by an AR (q) process: 

𝜀�̂�
2 = 𝛼0 + 𝛼1𝜀�̂�−1

2 + 𝛼2𝜀�̂�−2
2 + ⋯ + 𝛼𝑞𝜀�̂�−𝑞

2 + 𝜈𝑡                                              (2) 

Where 𝜈𝑡 is white noise term. If the amounts of 𝛼1, 𝛼2, … 𝛼𝑞  are all zero, the 

estimated variance will be constant and equal to 0α . Otherwise, the conditional 

variance exists. Hence, the following equation can be used to forecast the 

conditional variance at the time 1t + : 

𝐸𝑡𝜀�̂�+1
2 = 𝛼0 + 𝛼1𝜀�̂�

2 + 𝛼2𝜀�̂�−1
2 + ⋯ + 𝛼𝑞𝜀�̂�+1−𝑞

2                                                (3) 

Equation (3) is called ARCH model by Engel (1982).  

The GARCH Model 

Bollerslev (1986) developed the work of Engle in way that the conditional 

variance be a process of ARMA. Suppose the errors process to be as the 

following: 

𝜀𝑡 = 𝜈𝑡√ℎ𝑡 

In a way that 𝜎𝜈
2 = 1  and  

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖𝜀�̂�−𝑖
2

𝑞

𝑖=1

+ ∑ 𝛽𝑗ℎ𝑡−𝑗

𝑝

𝑗=1

                                                                     (4) 

In this condition, one needs to make sure that 𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0 and 1 −

∑ 𝛼𝑖
𝑞
𝑖=1 + ∑ 𝛽𝑗 > 0

𝑝
𝑗=1  to see the conditional variance positive. Since 

 
𝜈𝑡 is a 

white noise, the key point here is that the conditional variance of  𝜀𝑡  is as the 

following: 

𝐸𝑡−1𝜀𝑡 = ℎ𝑡 

So, the εt conditional variance complies with an ARMA process like the process 

(4). Such models are called GARCH (p, q) where q is the number of moving 

average (MA) terms and p is the number of autoregressive (AR) terms. GARCH 

model is known as a model of heterocedasticity which means not constant in 

variance. This model has been used widely in financial and business areas since 

the data of these areas tend to have variability or highly volatile throughout the 

time. 
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The IGARCH Model 

Integrated Generalized Autoregressive Conditional Heteroscedasticity 

(IGARCH) is a restricted version of the GARCH model, where the sum of the 

persistent parameters sum up to one, and therefore there is a unit root in the 

GARCH process. The constraints for an IGARCH (p,q) model can be written:  

∑ 𝛼𝑖

𝑞

𝑖=1

+ ∑ 𝛽𝑗 = 0    𝑎𝑛𝑑  0 < 𝛽𝑗 < 1                                                                               (5)

𝑝

𝑗=1

 

The Exponential GARCH (EGARCH) Model 

A model which accepts the asymmetric effect of the news is the exponential 

GARCH model (EGARCH). A problem in using the standard model of GARCH 

is that all the estimated coefficients must be positive. To overcome this problem 

the exponential GARCH (EGARCH) Model, suggested by Nelson (1991) can be 

used in which there is no need to observe the condition of non-negativeness for 

the coefficients: 

𝑙𝑛(ℎ𝑡) = 𝛼0 + 𝛼1 (
𝜀𝑡−1

ℎ𝑡−1
0.5⁄ ) + 𝜆1 |

𝜀𝑡−1

ℎ𝑡−1
0.5⁄ | + 𝛽1ln(ℎ𝑡−1)                   (6) 

  
 

Three interesting characteristics of the EGARCH model are: 

(1) The conditional variance equation has a logarithmic-linear form. Despite 

the fact that 𝑙𝑛(ℎ𝑡) is large, the amount of ℎ𝑡 cannot be negative. 

Therefore the coefficients are allowed to be negative. 

(2)  Instead of using the amount of  𝜀𝑡−1
2 , this model uses the standardized 

amounts 𝜀𝑡−1 (𝜀𝑡−1 divide on ℎ𝑡−1
0.5 ). Nelson showed that this 

standardization enables better interpretation of the amount and 

persistence of the shocks. 

(3) The EGARCH receives leverage effect. If  
𝜀𝑡−1

ℎ𝑡−1
0.5⁄  is positive, the 

shock's effect on the conditional variance logarithm will be equal to 

𝛼1 + 𝜆1. If  
𝜀𝑡−1

ℎ𝑡−1
0.5⁄  is negative, the shock's effect on the conditional 

variance logarithm will be equal to −𝛼1 + 𝜆1.  

The Threshold GARCH (TGARCH) Model / GJR Model 
A TGARCH (p, q) model as proposed by (Glosten et al., 1993) can also handle 

leverage effect, but the leverage effect is expressed in a quadratic form while in 

the case of EGARCH it is expressed in the exponential form. So the GJR-

GARCH model is written by: 

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖𝜀�̂�−𝑖
2

𝑞

𝑖=1

+ ∑ 𝛽𝑗ℎ𝑡−𝑗

𝑝

𝑗=1

+ ∑ 𝛾𝑖𝜐𝑡−𝑖𝜀�̂�−𝑖
2

𝑞

𝑖=1

                                   (7) 

Where 
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𝜐𝑡−𝑖 = {
1, 𝑖𝑓 𝜀𝑡−𝑖 < 0 
0, 𝑖𝑓 𝜀𝑡−𝑖 ≥ 0

                                                                              (8) 

and 𝛼𝑖 , 𝛾𝑖 and 𝛽𝑗 are non-negative parameters satisfying conditions similar to 

those of GARCH models. It can be seen that a positive 𝜀𝑡−𝑖 contributes 𝛼𝑖𝜀�̂�−𝑖
2  to 

ℎ𝑡 , wherase a negative 𝜀𝑡−𝑖 has a large impact  (𝛼𝑖 + 𝛾𝑖)𝜀�̂�−𝑖
2  with 𝛾𝑖 > 0. 

Forecasting Performance Measures 

This article uses three different criteria, namely Root Mean Squared Error 

(RMSE), (Mean Absolute Error) MAE, and Theil Inequality Coefficient (TIC) to 

compare the performance efficiency of the ARMA and ARMA-GARCH family 

models in the forecasting of Iran�s exchange rate behavior against changes in the 
U.S. Dollar (IRR/USD). That model with a smaller amount would be the 

considered as a better and more appropriate model. 

1. Root Mean Squared Error (RMSE): Root Mean Square Error (RMSE) 

measures the difference between the true values and estimated values, and 

accumulates all these difference together as a standard for the predictive 

ability of a model. The criterion is the smaller value of the RMSE, the better 

the predicting ability of the model. It is defined as follows: 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑡 − 𝑦𝑡)2𝑇+𝑘

𝑡=𝑇+1

𝑛
                                                                (9) 

2. Mean Absolute Error (MAE): It takes into consideration the average of the 

absolute value of the residuals. It is: 

𝑀𝐴𝐸 = ∑ |
�̂�𝑡 − 𝑦𝑡

𝑛
|                                                                           (10)

𝑇+𝑘

𝑡=𝑇+1

 

3. Theil Inequality Coefficient (TIC): The Theil inequality coefficient always 

lies between zero and one, where zero indicates a perfect fit. 

𝑇𝐼𝐶 =
√∑ (�̂�𝑡 − 𝑦𝑡)2𝑇+𝑘

𝑡=𝑇+1

√∑ �̂�𝑡
2𝑇+𝑘

𝑡=𝑇+1 + √∑ 𝑦𝑡
2𝑇+𝑘

𝑡=𝑇+1

                                           (11) 

Where 𝑦𝑡 is observed values, �̂�𝑡  is the predicted values at time 𝑡 and 𝑛 is the 

number of forecasts. 

 

4. Empirical results  

4.1 Data and Stationary Examination of Variable 
Daily data of Iran's exchange rate against the U.S. Dollar for period 20-3-

2014 to 20-6-2015have been derived from Central Bank of Iran reports. Figure 1 

shows the changes of Iran�s daily exchange rate for this period. 
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Figure 1.Daily data of exchange rate for the period of 20-3-2014 to 20-6-2015 

 
Since the basis of Box-Jenkins models' forecasting is the stationary of the series 

in question, so we use of Augmented Dickey˚ Fuller (ADF) test and Phillips-

Perron (PP) test on exchange rate data. Table 1 summarized the unit root tests for 

exchange rate�series. The Augmented Dickey-Fuller (ADF) and Phillips-Perron 

(PP) tests were used to test the null hypothesis of a unit root against the 

alternative hypothesis of stationarity. According to the Table 1 the results of 

ADF and PP tests show that the exchange rate series is non stationary, because 

the statistic value for both ADF and PP tests are greater than their corresponding 

critical values. 
 

Table 1. ADF and Phillip-Perron test on exchange rate series. 
     
     
   t-Statistic   Prob.* 

     
     

Augmented Dickey-Fuller test statistic  0.963483  0.9963 

Test critical values: 1% level  -3.445445  

 5% level  -2.868089  

 10% level  -2.570323  

     
     
   Adj. t-Stat   Prob.* 

     
     

Phillips-Perron test statistic  0.671980  0.9915 

Test critical values: 1% level  -3.445445  

 5% level  -2.868089  

 10% level  -2.570323  

     

25,000

26,000

27,000

28,000

29,000

30,000

2014Q2 2014Q3 2014Q4 2015Q1 2015Q2

EX



    M. Pahlavani and R. Roshan 

 

 

42 

To transform the non stationary exchange rate series, we calculate the exchange 

rate returns as: 

𝐸𝑋𝑅 = log(𝐸𝑋𝑡) − log(𝐸𝑋𝑡−1) = log (
𝐸𝑋𝑡

𝐸𝑋𝑡−1)⁄                 (12) 

The time series plot of the transformed data that is named exchange rate returns 

is shown in Figure 2. This plot shows that the mean of the series is now about 

constant. Hence, we can assume that the series is stationary. The variance is high 

that clearly exhibit volatility clustering, which allows us to carry on further to 

apply the ARCH family models. 
  

Figure 2.Daily data of exchange rate returns (EXR) for the period of 20-3-

2014 to 20-6-2015 

 

In Table 2 the results of ADF test and PP test show that the exchange rate returns 

series is stationary. 
 

Table 2. ADF and Phillip-Perron test on exchange rate return series. 
     
     
   t-Statistic   Prob.* 

     
     

Augmented Dickey-Fuller test statistic -12.19427  0.0000 

Test critical values: 1% level  -3.445445  

 5% level  -2.868089  

 10% level  -2.570323  

     
     
   Adj. t-Stat   Prob.* 

     
     

Phillips-Perron test statistic -18.94206  0.0000 

Test critical values: 1% level  -3.445445  

 5% level  -2.868089  

 10% level  -2.570323  
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To assess the distributional properties of the exchange rate return data, various 

descriptive statistics are reported in Table 3. 

 

Table 3. Summary statistics of Iran’s Exchange Rate Returns (IRR/USD). 
 

Mean  Std. Dev. Skewness Kurtosis Jarque Bera Prob.* 

0.00033 0.00069 3.72 31.30 16203.57 0.00 

 

Table 3 shows that the mean of exchange rate returns is close to zero and the 

sample kurtosis for it is well above the normal value of 3. There is also evidence 

of positive skewness, with long right tail indicating that exchange rate has non 

symmetric returns.  Jarque-Bera value shows that exchange rate returns 

distribution is leptokurtic and depart significantly from Gaussian distribution. 

Therefore, for capturing of volatilities in time series of returns, we will use the 

autoregressive conditional heteroscedasticity (ARCH) family models. 

4.2. Model Estimation and Forecasting using the Box-Jenkins Method 

In this section we tried to build univariate model to forecast exchange rate of 

Iran in terms of USD using Box-Jenkins Methodology of building ARIMA 

model. In order to find the most optimal lags, different AR and MA lags were 

tested. Autocorrelation and partial autocorrelation functions of residuals are also 

used. Information criteria of Akaike and Schwarz were also employed for 

identifying the best model. The most appropriate obtained model among different 

models is the following ARIMA ((2,4,11), (4)) type that is an adequate choice: 
 

EXRt = 0.0003 + 0.08EXRt−2 − 0.52EXRt−4 + 0.14EXRt−11 + 0.768εt−4 + εt    (13) 

Where EXR  represents the exchange rate returns. The p-values of the t-statistic of 

the estimated coefficients showed that all of them are highly significant. No 

evidence autocorrelation was found in this model's residuals (using the LM test) 

and D.W for this model is 2.001,  Akaike info criterion (AIC) and  Schwarz 

criterion (SBIC) are -11.955 and -11.905, respectively. This ARIMA model is 

used to forecast the exchange rate returns for the period (20-4-2015 to 20-6-

2015). The RMSE, MAE and TIC values are 0.000833, 0.000667 and 0.608215, 

respectively. 

As it is shown in Table 4, the serial correlation LM test (Breusch-Godfrey 

test) indicates that the estimated residuals are not autocorrelation. Hence, there is 

no need to search out for another ARIMA model.  
 

Table 4. Serial Correlation LM Test on ARMA residuals. 
Breusch-Godfrey Serial Correlation LM Test:  

     
     F-statistic 1.251633 Prob. F(2,389) 0.2872 

Obs*R-squared 2.524930 Prob. Chi-Square(2) 0.2830 
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The next step is to test whether the estimated errors are heteroscedastic or not. 

For this purpose, we test the presence of �ARCH effect� in the residuals by using 
the Lagrange Multiplier (LM) test for exchange rate returns series as suggested 

by Engle. The results of Lagrange Multiplier test are presented in Table 5. The p-

value indicates that there is evidence of remaining ARCH effect. So, we reject 

the null hypothesis of absence of ARCH effect even at 5% level of significance. 

Hence, in next section for capturing volatilities in exchange rate returns series we 

will use GARCH family of models.  
  

Table 5. Heteroskedasticity Test: ARCH for ARMA Model. 
Heteroskedasticity Test: ARCH   

     
     F-statistic 5.219649 Prob. F(2,391) 0.0058 

Obs*R-squared 10.24584 Prob. Chi-Square(2) 0.0060 

     
     

 

4.3. Estimation and forecasting Based on the various GARCH models.  

Exchange rate series is taken from 20-03-2014 to 20-06-2015 and various 

GARCH models are fitted to the exchange rate returns from 20-03-2014 to 19-

04-2015. The joint estimation of mean and variance equations using �Eviews� 
software is shown below for various GARCH models. 

ARIMA –ARCH Model 

A joint estimation of the ARIMA-ARCH(2) model gives: 

Mean equation:     
EXRt = 0.00028 + 0.24EXRt−7 + 0.10EXRt−11 + 0.06EXRt−12 + 0.08εt−4 + εt   (14) 

Variance equation:     

ht = 0.00000009 + 0.149εt−1
2  + 0.841εt−2

2                                                        (15) 

In Equation (15) ht is the conditional variance. The amount of p_value  for 

parameters of mean equation and variance equation are 0.00. So, all of the 

coefficients are highly significant. Akaike info criterion (AIC) and Schwarz 

criterion (SBIC) are -12.2917 and -12.2113, respectively. The RMSE, MAE and 

TIC values for forecasted data of this model are 0.000687, 0.000575 and 

0.542451, respectively. Now, we check whether the ARIMA ˚  ARCH has 

adequately captured the persistence in volatility and there is no ARCH effect left 

in the residuals from the selected models. The ARCH LM test is conducted for 

this purpose. The results of LM test given in Table 6 indicate that the residuals do 

not show any ARCH effect. Hence, ARIMA ˚  ARCH is found to be reasonable 

to remove the persistence in volatility. 
 

Table 6. Heteroskedasticity Test: ARCH for ARMA-ARCH Model. 
Heteroskedasticity Test: ARCH   

     
     F-statistic 0.617188 Prob. F(1,393) 0.4326 

Obs*R-squared 0.619356 Prob. Chi-Square(1) 0.4313 
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ARIMA –IGARCH Model 

Equation (15) shows that sum of coefficients ARCH terms is closely to one. So, 

for promotion the model, we apply an IGARCH model for capturing volatilities 

of returns series. A joint estimation of the ARIMA-IGARCH (1,1) model gives: 

Mean equation:     
EXRt = 0.00022 + 0.19EXRt−7 + 0.14EXRt−11 + 0.13EXRt−12 + 0.10εt−4 + εt     (16) 

Variance equation:     

ht = 0.210021εt−1
2  + 0.789979ht−1                                                                     (17) 

The amount of p_value�for parameters of mean equation and variance equation 

are 0.00. So, all of the coefficients are highly significant. Akaike info criterion 

(AIC) and Schwarz criterion (SBIC) are -12.4391 and -12.3788, respectively. 

The RMSE, MAE and TIC values for forecasted data of this model are 0.000707, 

0.000583 and 0.559248, respectively. The ARCH LM test indicates that the 

residuals do not show any ARCH effect. 

As we mentioned skewness and kurtosis represent the nature of departure from 

Normality and positive or negative skewness indicate asymmetry in the series. 

According to the table (3), skewness of 3.72 for exchange rate returns series 

indicates positively skewed due to the leverage effect with long right tail and a 

deviation from Normality. In the following the Glosten, Jagannathan and Runkle 

(GJR) and EGARCH models are used to test the leverage effect that successfully 

captures the asymmetry. 

ARIMA –GJR Model 

The results on mean equation and asymmetric conditional variance for exchange 

rate returns series by using Glosten, Jagannathan and Runkle (ARIMA-GJR-

GARCH (1,1)) Model are reported as follow: 

Mean equation:     

EXRt = 0.0035 + 0.0478EXRt−7 + 0.074EXRt−11 − 0.066εt−4 − 0.108εt−12

+ 0.000205log (ht) + εt                                                             (18) 
Variance equation:     
ht = 0.000000011 + 0.181εt−1

2 + 0.594ht−1 + 0.304εt−1
2 ∗ (εt−1 < 0)                  (19)          

 The results are showed that all of the coefficients are statistically significant at 

5% level. Akaike info criterion (AIC) and Schwarz info criterion (SBIC) are -

12.620 and -12.520, respectively. The RMSE, MAE and TIC values for 

forecasted data of this model are 0.000720, 0.000675 and 0.502462, respectively. 

The ARCH LM test indicated that the ARIMA ˚ GJR has adequately captured the 

persistence in volatility and there is no ARCH effect left in the residuals from the 

selected models. The mean equation consists of  log (ht) term, so this model 

named ARIMA-GJR-GARCH_MEAN also.   

ARIMA – EGARCH Model 

ARMA ˚  EGARCH (2,1) model for exchange rate returns series is estimated as: 

Mean equation:     
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EXRt = 0.00037 + 0.209EXRt−2 + 0.199EXRt−7 + 0.093εt−12 + εt          (20) 

Variance equation:     

log(ht) = −24.43 + 0.639
|εt−1|

√log(ht−1)
+ 0.697

|εt−2|

√log(ht−2)

− 0.177
εt−1

√log(ht−1)
− 0.557 log(ht−1)                                  (21) 

The results are showed that all of the coefficients are statistically significant at 

5% level. Akaike info criterion (AIC) and Schwarz criterion (SBIC) for this 

model are -12.1041 and -12.0137, respectively. The RMSE, MAE and TIC 

values for forecasted data of this model are 0.000661, 0.000569 and 0.500069, 

respectively. The ARCH LM test indicated that the ARIMA ˚ EGARCH has 

adequately captured the persistence in volatility and there is no ARCH effect left 

in the residuals from the selected models.  

4.4 COMPARATIVE ANALYSIS 

 In order to assess the validity of forecasting the exchange rate returns through 

the models presented in this paper, the RMSE, MAE and TIC criteria of these 

models are compared with each other. Table (7) presents RMSE, MAE, TIC for 

estimated models in this paper. 
 

Table 7. Comparison of test statistics for ARMA and family of GARCH models 
 

 

MODEL RMSE MAE TIC 

ARIMA 0.000833 0.000667 0.608215 

ARIMA-ARCH 0.000687 0.000575 0.542451 

ARIMA-IGARCH 0.000707 0.000583 0.559248 

ARIMA-GJR 0.000720 0.000675 0.502462 

ARIMA-EGARCH 0.000661* 0.000569* 0.500069* 

                              (*) minimum values to criterion. 

 

According to the achieved results of Table 7, the ARIMA-EGARCH model has 

the best value for RMSE, MAE and TIC criteria equal to 0.000661, 0.000569 and 

0.500069, respectively. So, the comparison of the forecasting performance 

through the RMSE, MAE and TIC criteria indicate that the best model is 

ARIMA-EGARCH .Therefore, ARIMA-EGARCH model captures the volatility 

and leverage effect in the exchange rate returns and its forecast performance is 

more than other models. Although this selected model has not the lowest values 

of diagnostic checking (such as AIC and SBCI), this result agrees with 

Mujumdar and Nagesh Kumar (1990) that best model for representation the data 

and best model for forecasting are often not the same. 

 

5. Conclusion 

The time series forecasting plays a central role in risk management, portfolio 

selection, asset valuations, option pricing, and hedging strategies in modern 

Finance. This paper focuses on building a model for the exchange rate of Iran 
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using time series methodology. Daily data of exchange rate RRI/USD for the 

period ranging from 20 March 2014 to 20 June 2015 are used for this purpose. 

First of all, the stationary of the exchange rate series is examined using unit root 

test such as ADF and PP tests which showed the series as non stationary. Hence, 

to make the exchange rate series stationary, the exchange rates are transformed to 

exchange rate returns. In order to find the most optimal lags, different AR and 

MA lags were tested using the Box-Jenkins Method. The most appropriate 

obtained model among different models using AIC and BIC is the ARIMA 

((2,4,11),(4)). As the financial time series like exchange rate returns may possess 

volatility, an attempt is made to model this volatility using ARCH/GARCH 

family models. To capture the volatility, ARIMA ((7,11,12),(4))˚ GARCH(2,0) 

model is used. The sum of coefficients of this model was very close to one. So, 

we estimated an ARIMA ((7,11,12),(4)) -IGARCH(1,1) model. Because of   

positive skewness and asymmetries of returns series, an ARIMA((7,11),(4,12))˚
GJR(1,1) and an ARIMA((7,2),(12)) ˚ EGARCH(2,1) model are estimated so that 

capture leverage effect in returns series. 

Finally, the forecast performance is measured using different measures like 

RMSE, MAE, and TIC. The ARIMA-EGARCH is found to be the best model 

with the lowest RMSE, MAE, and TIC. This model captures the volatility and 

leverage effect in the exchange rate returns and provides a model with fairly good 

forecasting performance.  

In further research, the above models that applied in IRR/USD exchange rate 

forecasting could easily be applied in other exchange rates also. 
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