دوفصلتامه تخصصى د اتشى مرمت و ميراث فرهنگي دوره جديل،سال تخست، شماره.r. ياييز و زمستات rar

تعيين نوع بازدارنده خوردگى در آليازهاى تاريخى(Y)

$$
\begin{aligned}
& \text { وحيد پور زرقان } \\
& \text { عضو هيات علمى مر كز تحقيقات باستان شناسى و گروه مرمت آثار تاريخى دانشكده هنر و معمارى، دانشگاه زابل } \\
& \text {, رايانامه: V_poorzarghan@uoz.ac.ir }
\end{aligned}
$$

 شوند كه به مرور زمان باعث تخريب اصلى اين آثار مى گردد. در اين اين راستا براى

 نوع بازدارنده ايفا مى كنند. كلمات كليدى: حفاظت، برنز، بيمارى برنز، بازدارنده، يّانسيو استات.

Determining the type of Corrosion Inhibitors for Historical Alloys

Porzarghan.V

Faculty of art and architecture, Dpt of Conservation of Historic-Cultural Properties, Zabol University
Abstract: Historical Bronze alloys because of the location and condition in the burial environment, mostly suffer bronze disease which gradually lead to complete destruction. In this regard, to prevent further degradation, inhibitors are used. Determining the type of anion, cation or mixed inhibitors plays an important role to prevent the progress of diseases. Data obtained from potentiostat device indicated that potential shift of inhibitor corrosion to positive pole compared with the blank solution is the sign of cathodic inhibition and the potential shift toward the negative pole indicate the anodic inhibition. If these changes occur in partial, the mixed inhibitors could be seen. In addition changes in current densities in the anodic and cathodic pole have an important influence in the type of inhibitor.
Keywords: Conservation, Bronze, Bronze Disease, Inhibitor, Potansiostat.

「-روش تحقيق

در اين مقاله براى انجام آزمايشها در تعيين نوع بازدارندگى، از دستگاه پتانسيو استات مدل SAMA 500 Electro

 میا

 سال 199V بنزوترى آزول را بهعنوان يك بازدارندهى خوب برای اشياء مسى معرفى كرد و كارآيى قابل قبولى را را براى آلى آن

گَارش كرد. والكر در تحقيقاتى ترى آزول، بنزوترى آزول و نفتوترى آزول را برروى اشيا برنجى استفاده كرد و كارآيى قابل

 Gerenrot and Eichis Walker

بينى امپٍانس استفاده شده است(Liliana, 2008).

r-r.r. تهيه الكترود كارى براى انجام آزمايش

 r..

شكل (ץ-ץ):نحوه قرار گيرى الكترود بر سطح الكتروليت

 پتانسيل تعادلى در نظر گرفته شد. اين آزمايش مطابق با استاندارد(ASTM,G5) (انجام شد(Stern, 1958).

ץ-ّ. تعيين نوع بازدارندهها (كاتدى، آندى و مختلط)

ع-نتيجهكيرى

استفاده از بازدارندههاى خوردگى در متن حفاظت فلز به ميزان زيادى مورد توجه واقع شده است. توانايى بازدارندههاى خوردگى به شكل تر كيبات غير محلول در سطح فلز مىتواند پايدارى بهتر خوردگى فلز را فراهم سازد و باعث جلب توجه زيادى براى حفاظت اشيا فلزى ميراث فرهنگى شود. كاربرد تر كيبات بازدارنده امكان ايجاد يكى لايه ناز ك نفوذ نايذيرى را مىدهد كه مىتواند باعث كندى فعاليتماى آندى و كاتدى شود. از اين رُوش حفاظتى مى توان بهعنوان آخرين و رايجترين راه حل براى مقابله با بيمارى برنز و رهايى از اين مشكل، استفاده نمود. تعيين نوع بازدارنده اهميت زيادى در مبحث خوردگى دارد. اين آزمايشها كه با استفاده از تكنيك Liner Sweep Voltammety (LSV) Tafel plot با دستگاه پتانسيواستات انجام گرفت نشان داد كه تغيير جزى بازدارندهها نسبت به محلول شاهد يا خورنده نشان دهنده بازدارنده مركب است. تغيير و جابجايیى بازدارنده نسبت به محلول خورنده به سمت پتانسيل خوردگى منفى، بازدارنده كاتدى و جابجايى بازدارنده به سمت پتانسيل خوردگى مثبت، از نوع بازدارنده آندى محسوب مىشوند .البته تغييراتى نيز با توجه به نوع بازدارنده در شاخههاى كاتدى و آندى انجام مىشود. دستگاه پتانسيو استات علاوه بر مشخص نمودن نوع بازدارندگى مىتواند مقدار پتانسيل
 خوردگى آثار برنزى تاريخى را ايفا كند.
 نامه كارشناسى ارشد مرمت آثار تاريخى دانشگاه هنر اصفمهان.

تخصصى دانش مرمت و ميراث فرهنگگى دوره جديد. صص_FY-AV

دو فصلنامه تخصصى دانش مرمت و ميراث فر هنگًى.صصף^^-ج

عود باشى، اميد. •^זّا، مطالعه و بررسى كاربرد بازدارندهمهاى خوردگیى در مرمت اشياء مسى، پاياننامه كارشناسى مرمت آثار
تاريخى دانشگاه هنر اصفهان، ص هr

Bard. A. j. Faulkner.L. R. 1980. Electochemical methods, back cover. New Yourk: Wiley.
Dom'enech-Carb'o. A, Dom'enech-Carb'o. M.T,Costa. V, 2009, Electrochemical Methods in Archaeometry, Conservation and Restoration, Springer
Faltermeier, B. Robert.1999. A corrosion inhibitor test for copper-based artifacts: Studies in Conservation, 44, pp121-128.
Ganokar, M.C., 1988. A novel method for conservation of copper-based artifacts ,Studies in Conservation, 33, pp 97-101.
GERENROT, Y. F., \& EICHIs, A. P. 1966. Effect of Benzotriazole on the Electrodeposition of Copper'. Zashch. Metal, 2, 581-583.
Groysman, A. 2009. Corrosion for everybody. Springer..
Hassairi, H., Bousselmi, L., Khosrof, S., \& Triki, E. 2008. Characterization of archaeological bronze and evaluation of the benzotriazole efficiency in alkali medium. Materials and corrosion, 59(1), 32-40.
Lianni, B. 2011. Corrosion behavior of bronze alloys exposed to urban and marin environment. Phd thesis,Sapieza university of Roms
Morad. M. S, Kamal El-Dean. A. M,2006, Corros. Sci.,48, p 3398.
Selwyn. L, 2004, Metals and Corrosion, A Handbook for the Conservation Profressional, Canadian Conservation Institute, Ottawa.
Shukla.S. K, Singh. A.K, Ahmad. I,Q uraishi. M. A,2009, Mater. Letters, 63, p 819
Scott D.A, 2002, Copper and Bronze in Art, Corrosion, Colorants, Conservation, Getty Publications, Los Angeles.
Stern, M. (1958). A method for determining corrosion rates from linear polarization data. Corrosion, Vol 14.p440-444

